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Neural Activity, Neural Connectivity, and the Processing of Emotionally-Valenced Information 

in Older Adults: Links with Life Satisfaction 

 

 

Abstract 

 

This study examines whether differences in late-life well-being are linked to how older adults 

encode emotionally-valenced information. Using fMRI with 39 older adults varying in life 

satisfaction, we examined how viewing positive and negative images affected activation and 

connectivity of an emotion-processing network. Participants engaged most regions within this 

network more robustly for positive than for negative images, but within the PFC this effect was 

moderated by life satisfaction, with individuals higher in satisfaction showing lower levels of 

activity during the processing of positive images.  Participants high in satisfaction showed 

stronger correlations among network regions – particularly between the amygdala and other 

emotion processing regions – when viewing positive as compared to negative images. 

Participants low in satisfaction showed no valence effect. Findings suggest that late-life 

satisfaction is linked with how emotion-processing regions are engaged and connected during 

processing of valenced information.  This first demonstration of a link between neural 

recruitment and late-life well-being suggests that differences in neural network activation and 

connectivity may account for the preferential encoding of positive information seen in some 

older adults. 

 

Key words:  aging, well-being, life satisfaction, neural connectivity, positivity effect
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Introduction 

Aging is typically characterized as a process of uniform decline across mental and physical 

domains.  Yet emotional well-being has been found to improve with age (Mather & Carstensen, 

2005; Mroczek & Kolarz, 1998; Williams et al., 2006).  This improvement is particularly 

important because of strong links between emotion in the elderly and physical and cognitive 

health (Benyamini, Idler, Leventhal, & Leventhal, 2000; Hawkley & Cacioppo, 2007).  In recent 

efforts to understand the sources of emotional well-being in the elderly, investigators have 

studied the ways in which emotionally-valenced information is processed when initially 

encountered (Mather & Carstensen, 2005; Murphy & Isaacowitz, 2008).  

Research demonstrates that older adults process emotionally-valenced information differently 

than younger adults.  In contrast to younger adults, older adults manifest a positivity effect – that 

is, preferential attention to and memory for positively-valenced over negatively-valenced 

information (Mather & Carstensen, 2005).  Age differences in emotion processing are found at a 

neural level in the degree to which specific brain regions respond to the input of emotionally-

valenced information.  In particular, the amygdala in older adults has been shown to respond less 

to negative than to positive information (e.g., Mather et al., 2004; St. Jacques, Bessette-Symons, 

& Cabeza, 2009).  Although the role of the amygdala in emotion processing was initially 

believed to be restricted to fear processing or negative emotions (e.g., Kjelstrup et al., 2002; 

Ohman & Mineka, 2001), recent work has demonstrated amygdala responses to positive as well 

as negative emotions (Hamann, Ely, Hoffman, & Kilts, 2002) and has led to more general 

hypotheses about the role of the amygdala in emotion processing.  For instance, Sander and 

colleagues (2003) have posited that the amygdala serves more generally as a relevance detector 

rather than being specifically linked with negative emotion processing.  Relatedly, Davis & 
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Whalen (2001) proposed that the amygdala may be activated in situations where people are 

particularly vigilant, regardless of whether the increased attention is directed toward aversive or 

appetitive stimuli.  If the amygdala plays a more general role as a salience detector, or if its 

activity is modulated by the vigilance accorded to a stimulus, this raises the possibility that older 

adults’ decreased amygdala response to negative information and their relatively preserved 

response to positive stimuli could be related to differences in perceptions of the relevance of 

positive and negative stimuli.   

Differences in amygdala engagement in relation to stimulus salience may account for the 

finding that amygdala response to negative versus positive information changes as a function of 

age. Moreover, the degree to which the amygdala distinguishes the two valences may differ 

within a single age group based on individual differences in the perceived salience of 

emotionally-valenced stimuli.  The present study addressed this latter possibility by using fMRI 

to examine whether differences in late-life wellbeing are linked to activation of amygdala-

mediated networks in response to positive and negative information.   

Although most prior studies examining brain responses to emotionally-valenced information 

in the elderly have focused on activation of particular brain regions – most commonly the 

amygdala (e.g., Mather et al., 2004; Wright, Wedig, Williams, Rauch, & Albert, 2006) – it is 

clear that the amygdala acts in concert with other regions such as the orbital frontal cortex and 

the ventromedial frontal cortex  to ascertain the meaning of an emotional event (Hartley, 2010; 

Ochsner, Bunge, Gross, & Gabrieli, 2002; Phelps, 2005).  Connectivity among these brain 

regions is likely to be important for understanding older adults’ “positivity effect.” For example, 

older adults have stronger connectivity among the ventromedial prefrontal cortex, amygdala, and 

hippocampus than do young adults during the processing of positive information (Addis et al., 
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2010), and older adults can shower weaker connections than young adults between the amygdala 

and the hippocampus during the encoding of negative information (St. Jacques, Dolcos, & 

Cabeza, 2009).  

Age-related patterns of emotion processing have often been hypothesized to be connected to 

levels of well-being (e.g., Charles & Carstensen, 2010).  Yet there has not been an empirical 

demonstration of a link between older adults’ emotional well-being and their recruitment of 

emotion-processing circuitry.  The present study directly examined whether this link could be 

revealed. We examined both activity and connectivity within regions previously revealed to be 

an important part of an emotional memory network (Addis, Leclerc, Muscatell, & Kensinger, 

2010; also see meta-analysis by Murty, Ritchey, Adcock, & LaBar, 2011), focusing on how 

participants’ reported satisfaction with life was related to neural activity or connectivity as they 

processed positively-valenced and negatively-valenced visual images.  In addition to the 

amygdala, this network of regions included the ventromedial and orbitofrontal cortex, which 

have been associated with attention toward internal states (including affective ones) and with the 

regulation of those states (e.g., Cooney, Joorman, Atlas, Eugene, & Gotlib 2007; Kalisch, Wiech, 

Critchley, & Dolan, 2006); the hippocampus, known to be critical for the successful storage of 

information in memory (e.g., Cipolotti & Bird, 2006; Spaniol et al., 2009); the thalamus, which 

can serve as an interface between the prefrontal and hippocampal regions (e.g., Vertes, 2006); 

and the fusiform gyrus, a part of the ventral visual processing stream (Ungerleider & Haxby, 

1994) whose processing can be modulated by the presence of emotion (e.g., Padmala & Pessoa, 

2008).   Each of these regions has been shown to interact extensively with the amygdala. For 

instance, prefrontal interactions with the amygdala often guide emotion regulatory processes 

(e.g., Cooney, Joorman, Atlas, Eugene, & Gotlib 2007; Kalisch, Wiech, Critchley, & Dolan, 
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2006), hippocampal interactions with the amygdala intensify memory encoding and 

consolidation (e.g., Hamann, 2001), and fusiform interactions with the amygdala augment visual 

attention and sensory processing (e.g., Padmala & Pessoa, 2008). 

The present study addressed the hypothesis that within a cohort of older adults, amygdala 

connectivity with the other regions within this network would differ as a function of life 

satisfaction. Such a relationship between amygdala connectivity and life satisfaction could be 

interpreted in two distinct ways: (1) that well-being is shaped by the degree to which positive 

versus negative stimuli are interpreted as salient or personally relevant (Carstensen & Mikels, 

2005), or (2) that patterns of amygdala-mediated neural connectivity shape well-being.   

A critical first step is to establish whether or not such a link exists. The current study is one 

of the first to examine patterns of connectivity among brain regions that might be linked with 

emotional well-being in older adults (see also Addis, Leclerc, Muscatell, & Kensinger, 2010; St. 

Jacques, Dolcos, & Cabeza, 2009), and it is the first to examine individual differences within a 

cohort of older adults in neural recruitment during emotion processing.  Our aim was to examine 

whether different levels of emotional well-being are associated with different patterns of neural 

connectivity when processing positively- and negatively-valenced information.  We predicted 

that those higher in life-satisfaction would show stronger connectivity between the amygdala and 

the other regions of the emotion-processing network during the encoding of positively-valenced 

information compared to negatively-valenced information; this finding would be consistent with 

a connection between higher life satisfaction and higher salience of positive information.  To 

address the relation between life satisfaction and neural activity and connectivity, we focus on a 

sample of older adults because of previous findings of changes in emotion processing in this age 
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group (e.g., Carstensen, Pasupathi, Mayr, & Nesselroade, 2000) and hypothesized links between 

these changes and wellbeing (e.g., Löckenhoff & Carstensen, 2004). 

 

Method 

Participants  

Participants enrolled in a longitudinal study of adult development (Glueck & Glueck, 1968; 

Heath, 1945; Vaillant, 1977) were contacted if they met eligibility criteria for fMRI.  Among the 

59 participants who agreed to participate in an fMRI scan assessing emotion processing, usable 

data was obtained from 39 participants (10 females, 29 males, mean age 79.5 years, range 64-89, 

SD = 6.2; mean years of education 15.1, range 10-20, SD = 2.9).  The remaining participants 

were excluded due to scanner malfunction (2 participants), projector malfunction (2), poor task 

performance (3), excessive head motion (4), or vision problems that prevented viewing of the 

images (9 participants).  35 participants were right-handed or ambidextrous, and 4 were left-

handed. Of the 4 left-handed participants, 3 were in the high life satisfaction group and 1 was in 

the low satisfaction group. 

Measures 

Life satisfaction was measured at the time of the MRI procedure using the Satisfaction With 

Life Scale (SWLS, Diener, Emmons, Larsen, & Griffin, 1985), a widely-used self-report 

questionnaire that is designed to measure cognitive-evaluative aspects of subjective wellbeing. 

Participants rate how much they agree or disagree with 5 life satisfaction statements on 7-point 

Likert-type scales. Scores are summed to generate a total score ranging from 5 to 35. The SWLS 

has been shown to have good reliability and validity (Pavot, 1991).  Past research has found 

sizeable correlations between the SWLS and measures of positive affect (e.g., r=.55; Palmer, 
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Donaldson, & Stough, 2002), negative affect (e.g., r=-.57; Chang, E.C., Watkins, A.F., & Banks, 

K.H., 2004), and depression (e.g., r=-.72; Blais, M.R., Vallerand, R.J., Pelletier, L.G., & Briere, 

N.M.,1989). 

MRI Methods   

Structural and functional magnetic resonance images were acquired on a General Electric 

MRI scanner (General Electric Medical Systems, Milwaukee, WI). Anatomic images were 

acquired with a multi-planar rapidly acquired gradient echo (MP-RAGE) sequence.  Functional 

images were collected using a gradient echo, echoplanar imaging (EPI) pulse sequence sensitive 

to blood oxygenation level dependent (BOLD) signal (repetition time (TR) = 3000 ms, effective 

echo time (TE) = 40 ms, flip angle = 90 degrees).  Twenty-seven axial-oblique slices (3.12 mm 

thickness) were aligned along the line between the anterior commissure and the posterior 

commissure and were acquired in an interleaved fashion. This slice acquisition allowed for 

coverage of most of the brain, although the dorsal-most aspects of the frontal and parietal lobes 

were not included within the field of view. 

During the fMRI scan, participants viewed 180 pictures (60 positive and arousing, 60 

negative and arousing, 60 neutral) selected from the IAPS database (Lang, Bradley, & Cuthbert, 

1999).  Normative data for these pictures had previously been gathered to ensure that older 

adults’ ratings agreed with the IAPS norms (as reported in Leclerc & Kensinger, in press). Each 

picture was presented for 3 sec.  Pictures from the different emotion categories were 

pseudorandomly intermixed, with interstimulus intervals ranging from 3 to 12 seconds, in order 

to create the jitter necessary to optimize detection of the hemodynamic response associated with 

each picture (Dale, 1999). Participants were asked to view the series of pictures as if they were 

watching TV and to press a button each time the picture changed. Outside of the scanner, 
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participants performed a surprise recognition memory task. Only items that were correctly 

recognized were included in fMRI analyses, because for these items it was clear that the 

participants had attended and processed the image while in the MRI scanner. 

Pre-processing and data analysis were conducted within SPM2 (Wellcome Department of 

Cognitive Neurology).  Standard pre-processing included slice-timing correction, rigid body 

motion correction, normalization to the Montreal Neurological Institute template (re-sampling at 

3 mm cubic voxels), and spatial smoothing (using an 8-mm full-width half maximum isotropic 

Gaussian kernel).  

Data analysis 

Region Definition.  We used a region-of-interest (ROI) approach for all analyses.  ROIs 

were taken from the coordinates from a prior study examining age-related changes in emotion 

processing (Addis, Leclerc, Muscatell, & Kensinger, 2010).  This selection of ROIs was chosen 

because we were concerned that using group analyses from the present dataset to define regions 

could allow a subset of our participants (e.g., those high in life satisfaction) to bias region 

selection.  By using coordinates from a prior study, we ensured that the region selection was 

unbiased with regard to the individual differences present in our current sample. 

For each of the ROIs identified in the Addis et al (2010) study (except for the 

dorsomedial PFC which could not be imaged in our study due to our slice acquisition 

parameters), we defined 8-mm spheres centered around the maximum voxel reported in that 

paper (see Table 1 for regions and coordinates).  Within each of these ROIs, a hemodynamic 

response function was calculated for each individual subject and for each valence type (positive, 

negative, neutral) as a function of peristimulus time (0-21 sec). The average percentage signal 
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change reached within peristimulus times 3-9 sec was then computed for each participant, and 

these signal change values underwent further analyses. 

Table 1 

Regions included in the anatomical model* 

Region Hemisphere Coordinates 

Amygdala L -28, -3, -12 

Fusiform L -46, -48, -18 

Hippocampus L -36, -7, -23 

Orbitofrontal cortex L -36, 44, -8 

Thalamus L -6, -20, -2 

Ventromedial prefrontal cortex Bilateral 0, 39, -5 

 

*Regions were selected because of their known contributions to the emotional memory network 

(Addis, Leclerc, Muscatell, & Kensinger, 2010). 

Regional Activity.  We first examined the activity within each ROI, using an ANOVA 

with the within-subject factor of valence (positive, negative, neutral) to test for differences.  We 

included scores on the satisfaction with life scale as a covariate; gender and age were also 

included as covariates in these analyses.  These analyses allowed us to examine whether life 

satisfaction moderated the pattern of activity within the ROIs. 

 Regional Connectivity.  After examining the activity within each separate ROI, we then 

examined the connectivity among the regions by computing correlation matrices and using 

structural equation modeling (SEM) analyses.  
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All SEM calculations were performed using Lisrel 8.30 (Joreskog & Sorbom, 1993).  

These analyses require the definition of an anatomical and a functional model (McIntosh & 

Gonzalez-Lima, 1994).  For the anatomical model, we included all of the ROIs listed in Table 1 

(from Addis et al., 2010) and we included connections that were both plausible anatomically and 

also of interest to our hypotheses regarding emotion processing.  For all projections except for 

those involving the fusiform we modeled bidrectional connections.  For the fusiform we focused 

on the feed-forward connections because we were interested in how visual information was 

transmitted to emotion processing regions.  

For the functional model, participants were divided into two groups based on a median 

split of scores for life satisfaction.  Although we recognize that the use of a median split has 

limitations, SEM has yet to be used with fMRI data while including a continuous-variable 

moderator.  Therefore, performing the median split on our participant groups allowed us to 

employ an existing, well-validated method for using SEM with fMRI data (McIntosh & 

Gonsalez-Lima, 1994).  Pairing these SEM analyses with the analyses of regional activity that 

treated life satisfaction as a continuous moderator allowed us to address some of the limitations 

of depending solely on a median split.  

Separate functional models were examined for the high satisfaction group and for the low 

satisfaction group.  For each group, correlation matrices were calculated separately for each 

valence (positive and negative), revealing the correlation of percentage signal change between 

each of the ROIs within the anatomical model (see Table 2 for correlation matrices).  Because no 

region included in the model was shown to activate significantly during the processing of neutral 

images (see Figure 1), SEMs were not computed for the neutral images. For each of the two 

SEMs (one comparing negative to positive stimuli in the high-satisfaction group, and the other 
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comparing negative to positive stimuli in the low-satisfaction group), estimates of path 

coefficients – indicating strength and direction of influence - were calculated based on these 

correlation matrices. 

To determine whether there were significant differences in connectivity between the 

conditions (i.e., between negative and positive valence), we used a stacked-model SEM approach 

(McIntosh & Gonzalez-Lima, 1994) to compare a null model, in which the path coefficients for 

positive and negative valence were assumed to be equal, to an alternate model in which the path 

coefficients for negative and positive valence were allowed to vary.  The fit of the null and 

alternate models were determined using a goodness-of-fit χ
2
 test, and the differences between the 

models were calculated by comparing these goodness-of-fit χ
2
 values to obtain a χ

2
diff.  If the 

χ
2

diff between models reached statistical significance (p < .05), that indicated that there were 

significant differences in the connections within the emotion processing network as a function of 

stimulus valence. If the χ
2

diff between models did not reach significance, the null model could not 

be rejected, suggesting that the same neural connectivity was present when processing both 

positive and negative images.  If the null and alternate models were found to differ significantly, 

additional SEM analyses were conducted to determine which connections contributed 

significantly to the differences.  In these analyses, each connection was allowed to vary in a 

stepwise manner. If allowing a connection to vary caused a reduction in the p-value associated 

with the χ
2

diff, then this connection was allowed to vary in the final model.  Otherwise, the 

strength of the connection remained fixed in the final model. 

Because the order in which connections are allowed to vary can influence whether a 

connection is deemed to have a significant influence on the fit of the model, we conducted a 

series of different stepwise removals, using a different path removal order each time.  The model 
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reported here is the model that led to the largest χ
2

diff from the null model while still retaining 

good model stability (as described in Addis et al., 2010) and no beta-weights reported above a 

value of 1. 

Results 

The mean SWLS score in this sample was 27.0 (range 11-35, SD = 6.5), similar to the 

mean score (25.8) in a group of 53 elderly adults (average age 75) reported by Diener and 

colleagues (SWLS, Diener, Emmons, Larsen, & Griffin, 1985).  Using a median split, 

participants were categorized as “high” or “low” on life satisfaction; those categorized as high in 

life satisfaction (21 participants) had scores of 29 and above while the other 18 participants were 

categorized as low in life satisfaction.  Participants in the high and low satisfaction groups did 

not differ significantly with respect to age, years of education, IQ (as measured by the 

AMNART; Blair & Spreen, 1989), or cognitive functioning (CERAD memory and executive 

functioning composites; Morris et al, 1989).  Information about self-rated physical health was 

available for 27 of the 29 men in the sample; self-reported health (on average 16 months prior to 

the MRI) did not differ across high and low satisfaction groups for these men. 

Neural activity during processing of emotionally-valenced stimuli 

ROI analyses first examined the pattern activity in each of the 6 regions as a function of 

valence.  Separate ANOVAs were conducted for the signal change within each region, with 

emotional valence (positive, negative, neutral) as a within-subject factor.  For the fusiform gyrus, 

this ANOVA revealed no significant effect of valence, F(2,37) = 1.27, p > .25, partial eta-

squared = .076.  For the hippocampus, the ANOVA revealed a significant effect of valence, 

F(2,37) = 3.67, p < .05, partial eta-squared = .17, with signal change enhanced for positive or 

negative pictures compared to neutral ones, p < .05, but not differing significantly between 
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positive and negative pictures, p > .6.  For the amygdala, OFC, thalamus, and vmPFC, all 

ANOVAs revealed significant effects of valence, all F(2,37) > 5.9 , all p < .01, all partial eta-

squared > .24.  In each of these regions, signal change was greater for positive pictures than for 

negative or neutral ones, p < .05.  In the amygdala, thalamus, and vmPFC, signal change also 

was greater for negative items than for neutral, p < .05 (see Figure 1). 

Figure 1 

Signal change in the six ROIs as a function of valence (ROI coordinates listed in Table 1).   

* = significant difference, p<.05. 

 

Because we were particularly interested in how individual differences in life satisfaction 

could impact this pattern of neural activity, we re-ran the ANOVAs including life satisfaction 

scores, gender, and age as covariates.  These analyses indicated that life satisfaction scores 

moderated the effect of emotion on activity only in the OFC, F(2,34) = 3.42, p < .05, partial eta-

squared = .17; and in the vmPFC, F(2,34) = 5.38, p < .01, partial eta-squared = .24.  In all other 
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regions, the moderation was not significant, F < 2, p > .15. Neither age nor gender was a 

significant moderator in any of the ANOVAs (p > .15).  

To further clarify the nature of the moderating impact of life satisfaction, univariate 

ANOVAs were run separately for each valence of information processed within the OFC or 

vmPFC.  These ANOVAs revealed that life satisfaction scores influenced the activity in the 

OFC, F(1,38) = 5.49, p < .05; and vmPFC, F(1,38) = 8.76, p < .01, during the processing of 

positive images but did not influence the activity in either region during the processing of 

negative or neutral images (all p > .1).  In both of these regions, higher levels of life satisfaction 

were associated with lower activity during the processing of positive information.   

Neural connectivity during processing of emotionally-valenced stimuli 

Having established that life satisfaction was linked to activity within PFC regions, we 

then examined whether it also was associated with the connectivity within a network of emotion 

processing regions.  Inspection of the correlation matrices for the two groups (see Table 2) 

pointed to substantial between-group differences in connectivity: the high satisfaction group had 

mostly negative correlations among the different ROIs when processing negative images but had 

strong positive correlations among the regions when processing positive images.  

There did not appear to be as large a discrepancy in the strength of the regional 

correlations for the low satisfaction group, with correlations being of moderate positive strength 

regardless of the valence of image being processed.  Fisher z-tests confirmed that nearly all 

correlations were significantly stronger during the encoding of the positive compared to the 

negative images in the high-satisfaction individuals, whereas in the low-satisfaction individuals 

only the correlations with the vmPFC differed based on the valence (positive vs. negative) of the 

images being encoded.   Between-group comparisons of the correlation coefficients (using Fisher 
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z-tests) further confirmed these differences: high-satisfaction individuals had consistently lower 

correlations during the processing of negative images than did low-satisfaction individuals 

(significant group differences denoted by underlining in Table 2).   

Table 2   

Correlation matrices for the six ROIs as a function of image valence and life satisfaction group 

Notes: 

a. Underlined values denote a significant difference (p<.05) in correlation strength between 

low and high satisfaction individuals. 

Low Satisfaction Group (N=18)  below         High Satisfaction Group (N=21) above 

diagonal                                                             diagonal 

Negative Images      

 Fusiform OFC Hippocampus Amygdala Thalamus vmPFC 

Fusiform -- 0.37 0.36 -0.26 -0.25 0.08 

OFC 0.36 -- -0.16 0.19 0.16 0.61** 

Hippocampus 0.28 0.34 -- -0.14 -0.27 -0.04 
Amygdala 0.33 0.64** 0.75** -- 0.44* 0.32 

Thalamus 0.52* 0.53* 0.74** 0.79** -- 0.40* 

vmPFC -0.20 0.23 0.02 0.05 -0.25 -- 

       

Positive Images      

Fusiform -- 0.83** 0.73** 0.64** 0.77** 0.63** 

OFC 0.43 -- 0.58** 0.54* 0.77** 0.64** 

Hippocampus 0.39 0.60** -- 0.89** 0.72** 0.66** 

Amygdala 0.42 0.69** 0.89** -- 0.78** 0.69** 

Thalamus 0.59* 0.46 0.87** 0.86** -- 0.77** 

vmPFC 0.42 0.60** 0.74** 0.66** 0.74** -- 

       

Neutral Images      

Fusiform -- -0.09 0.37 0.12 0.08 0.08 

OFC 0.39 -- 0.35 0.51* 0.36 0.51* 

Hippocampus 0.38 0.66** -- 0.67** 0.65** 0.51* 

Amygdala 0.17 0.63** 0.83** -- 0.78** 0.79** 

Thalamus 0.46 0.88** 0.78** 0.73** -- 0.87** 

vmPFC 0.20 0.86** 0.64** 0.63** 0.77** -- 
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b. Asterisks (*) denote correlations that are significantly different from zero (*p < .05; 

**p<.01).  

c. Boldface type and italics denote correlations that are significantly different (p<.05) within 

groups across conditions. These comparisons were only made between positive and 

negative images. 

d. The approach described by Steiger (1980) and Kashy & Snyder (1995) was used to 

compare correlations within persons across conditions.  

 

High-satisfaction individuals also showed a few instances of lower correlations than low-

satisfaction individuals during the processing of neutral images. By contrast, all correlations that 

differed between the two groups for the positive images were in the opposite direction, with 

high-satisfaction individuals showing stronger correlations than low-satisfaction individuals. 

Thus, it is only for the positive images that high-satisfaction individuals show stronger 

correlations between regions than low-satisfaction individuals.  

SEM analyses allowed us to examine further whether the effect of valence on neural 

connectivity was different in those high versus low in life satisfaction.  The omnibus SEM 

analysis for the high satisfaction group revealed a significant effect of valence on the effective 

connectivity within the emotion processing network; the alternate model was a significantly 

better fit than the null model, χ
2

diff = 55.5, df = 15, p < .001.  A stepwise assessment of the 

connections that differed significantly across conditions revealed that a number of connections 

were stronger during the encoding of positive pictures as compared to negative ones.  These 

connections included projections from the amygdala to the orbitofrontal cortex, the ventromedial 
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prefrontal cortex, and the thalamus, as well as projections from the fusiform to the hippocampus, 

and from the hippocampus to the amygdala (see Figure 2).   

 

Figure 2    

Patterns of effective connectivity for the high-satisfaction group during encoding of negative 

pictures (at left) and  positive pictures (at right).  Red lines denote connections of significantly 

different strength for negative and positive pictures; black lines signify connections of similar 

strength for each valence.  All pathways included in the anatomical model are depicted. 
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The omnibus SEM analysis for the low satisfaction group revealed no significant effect 

of valence on the effective connectivity within the emotion processing network, χ
2

diff = 22.2, df = 

15, p > .10.   In the low satisfaction group, the amygdala showed strong projections to prefrontal 

and thalamic regions, and the strength of these connections did not differ based on the valence of 

the information being processed (Figure 3).   

Figure 3    

Patterns of effective connectivity for the low-satisfaction group during  encoding of positive and 

negative pictures (no significant differences between patterns for positive and negative pictures).  

All pathways included in the anatomical model are depicted. 
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Comparisons of the correlation strengths confirm that in the high satisfaction group, all 

but one correlation coefficient differed by at least 0.34 (and most differed by more than 0.5),  

whereas in the low satisfaction group, with the exception of 5 correlations (4 of which were with 

the vmPFC), correlation coefficients differed by less than 0.26. Thus, only for those high in 

satisfaction do the majority of connections within the emotion processing network differ for 

positively- and negatively-valenced items; for the low satisfaction group, the network appears to 

be engaged similarly regardless of the valence of information being processed.  

 

Discussion 

This study is the first to demonstrate links between late-life well-being and patterns of 

activity and connectivity within a neural network involved in emotion processing.  Life 

satisfaction was a moderator of activity within the OFC and vmPFC, and only older adults high 

in life satisfaction showed stronger connectivity within an amygdala-mediated network in 

response to positive visual images compared with negative ones, whereas no such valence effect 

was seen in older adults who reported lower life satisfaction. 

The study adds to the literature on the neural underpinnings of emotion processing in older 

adults in two ways.  First, prior studies of emotion processing and aging have compared older 

with younger adults but have not examined differences among older adults based on differences 

in subjective well-being.  Second, prior studies of neural activation in response to emotionally-

valenced stimuli have focused on particular areas of the brain but have not examined 

connectivity of brain regions associated with emotion processing.   

The preferential attention to and memory for positive information seen in many older adults 

has been associated with differences in amygdala activation (e.g., Mather et al., 2004).  This 
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linkage in turn has been proposed to be associated with greater emotional well-being, yet this 

study is the first to demonstrate a direct link between amygdala connectivity and subjective well-

being among older adults. Considering the amygdala as a detector of relevance (Sander, 

Grafman, & Zalla, 2003), the findings of this study would be consistent with the hypothesis that 

older adults higher in subjective well-being may find negative information less salient than 

positive, resulting in less connectivity within an amygdala-mediated emotion processing network 

in response to negative than to positive information. This difference in the salience of positive 

compared with negative information among a subset of older adults would be consistent with 

behavioral findings in the literature – for example, that some older adults are more likely to 

remember positive rather than negative images (Mather & Knight, 2005) or to bias gaze away 

from angry faces and toward happy ones (Isaacowitz, Toner, & Neupert, 2009).  

 Critically, only a subset of the older adults – those higher in life satisfaction – showed 

differences in neural connectivity consistent with the positivity effect.  Adults lower in life 

satisfaction did not show this valence effect, suggesting that they may not differ in their 

perceptions of the salience of positive and negative stimuli. It would be useful to test whether 

differences in emotional well-being among older adults are associated with perceptions of the 

relevance of positive and negative information in making important life choices in areas related 

to health, finances, and living situations. 

An open question with regard to the positivity effect is to what extent it represents changes in 

older adults’ processing of positive information (e.g., a focus on the positive), changes in their 

processing of negative information (e.g., an avoidance of the negative), or a combination of these 

factors (discussed by Murphy & Isaacowitz, 2008).  The results of the present study reveal the 

importance of considering both activity levels and connectivity profiles when examining this 
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question at a neural level.  When activity levels were considered, self-reported life satisfaction 

was found to moderate activity in the OFC and vmPFC only for the processing of positive 

information: higher life satisfaction was associated with lower activation during the encoding of 

positive images.  Because this activity was measured for items that were successfully encoded 

into memory (i.e., for items that were later recognized), the lower activation levels may reflect 

enhanced neural efficiency.  Reductions in neural activity are often shown on tasks that measure 

repetition priming (reviewed by Schacter, Dobbins, & Schnyer, 2004), and so this pattern may 

reflect the fact that high-satisfaction individuals are able to encode positive items into memory in 

a more efficient fashion than low-satisfaction individuals, without needing to activate the PFC to 

the same degree.   

If only activity levels had been measured, it would have been tempting to conclude that life 

satisfaction was linked to the processing of positive but not negative information and that the 

effects were constrained to regions of the PFC.  Yet the correlation matrices paint a different 

picture, with high-satisfaction individuals showing reliably lower correlations among multiple 

regions of the emotional memory network than low-satisfaction individuals during the 

processing of negative images.  Thus, at least in the present study, there is evidence that self-

reported satisfaction is linked with the neural processing of both positive and negative 

information and that these connections are not circumscribed to the PFC.   The SEM results 

further emphasize that self-reported satisfaction is not only linked to the recruitment of PFC 

regions; rather, the way that the amygdala communicates with other regions during the encoding 

of positive versus negative information is also related to life satisfaction. These findings 

emphasize that patterns of neural connectivity do not always parallel patterns of neural activity 

and underscore the importance for research to include both of these approaches.  
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The study has limitations that may inform future research. Perhaps the most important 

limitation is the inability to distinguish direction of influence between neural recruitment and life 

satisfaction, as they were measured concurrently. We cannot know from this study whether those 

individuals who are more satisfied with life are more likely to recruit specific neural pathways, 

or whether the recruitment of these pathways leads to greater life satisfaction. Multiple 

assessments would help determine the extent to which changes in one variable predict future 

changes in the other as well as the stability of both variables over time.  

The absence of a valence effect in patterns of brain activation among those low in life 

satisfaction could be the result of insufficient power to detect existing differences, and it would 

be important to replicate this study in a larger sample.  As more sophisticated techniques for 

using SEM analyses with fMRI data are validated, it will be important to examine whether there 

is a specific point along the continuum of life satisfaction scores at which amygdala connectivity 

suddenly diverges as a function of valence, or whether the connectivity changes are more 

gradual.  The two groups that are the focus of analyses in this study – the high and low 

satisfaction groups – are similar in a number of respects including age, intelligence, memory, and 

executive functioning.  There is also some evidence that their recent health was equivalent across 

the two groups.  There are, however, other ways in which these two groups may differ that may 

contribute in unknown ways to the differing patterns of results found in this study.  For example, 

Gerstorf, Ram, et. al. (2008) note that the age sensitivity of corticostriatal connections and 

dopamine-dependent processes implicated in reward processing may relate to late-life declines in 

well-being, and other recent research suggests that wellbeing declines with approaching death 

(e.g., Mroczek & Spiro, 2005; Palgi & Shmotkin, 2010).
1
  We continue to follow the participants 
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in this study and at a later time will be able to examine whether proximity to death is linked with 

differences in life satisfaction and with neural processing of emotionally salient information.   

Building on previous research (Addis and McAndrews, 2006; Gilboa, 2004) this study 

demonstrates the potential of SEM to assess connectivity across brain regions. The application of 

SEM to connectivity data, however, is still new, and the relatively small samples typically used 

in fMRI studies challenge the limits of what is commonly thought to be a sufficient sample size 

(Kline, 2010).  In this study our conclusions are not based on the SEM analyses alone but are 

based on the combination of results revealed through the activity profiles, the correlation 

matrices of connectivity, and the SEM analyses of connectivity.  All of these analytic approaches 

point to important differences between the low- and high-satisfaction groups.   

This study addresses individual differences within a cohort of older adults.  As such, it does 

not inform our understanding of possible differences within other age groups or whether these 

differences are stable over time. Additional longitudinal data will be required to determine 

whether the individual differences in neural activity and connectivity identified in this study are 

related to the observed positivity effect as people age. The results of this study, however, point to 

a potential mechanism that can be the focus of further longitudinal research on this question.   

 

                                                                                                                                                             
1
 We wish to thank an anonymous reviewer for drawing our attention to past research linking 

proximity to death and life satisfaction. 
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