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Models Don’t Decompose That Way: A Holistic View of Idealized Models 

Collin Rice 

Abstract 

Many (if not most) accounts of scientific modeling assume that models can be decomposed into 

the contributions made by their accurate and inaccurate parts. These accounts then argue that the 

inaccurate parts of the model can be justified by distorting only what is irrelevant. In this paper, I 

argue that this decompositional strategy requires three assumptions that are not typically met by 

our best scientific models. In response, I propose an alternative view in which idealized models 

are characterized as holistically distorted representations that are justified by allowing for the 

application of various (mathematical) modeling techniques. 
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1. Introduction 

Many (if not most) accounts of scientific modeling—across a range of debates—assume that 

models can be decomposed into the contributions made by their accurate and inaccurate parts.1 

These accounts also assume that real-world systems can be decomposed into the contributions 

made by the features that are relevant and irrelevant to the target phenomenon. It is then typically 

claimed that the accurate parts of a successful2 scientific model map onto what is relevant (or 

                                                 
1 A notable exception are fictionalist accounts of models (Frigg [2010]; Godfrey-Smith [2009]). However, since 

these fictionalist accounts focus on the ontology of models rather than on how models explain, how idealizations 

contribution to explanations, robustness analysis, realism, etc. they will not be my focus here. Moreover, I think the 

problems of the decompositional strategy can be solved without the additional metaphysical commitments to 

hypothetical systems that are involved with most fictionalist accounts of what models are. 
2 In most cases “successful” will mean explanatory. However, since some of the accounts that fall under the 

decompositional strategy are not explicitly focused on explanation it would be misleading to include that as a 

requirement of being successful. The point here is that the models that best achieve the goals of scientific inquiry 

will be those that meet these three assumptions. 
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important) and the inaccurate parts of the model only distort what is irrelevant (or unimportant). 

This allows one to argue that the accurate parts of the model are what “do the real work” while 

the inaccurate parts of the model are justified by distorting only what is irrelevant. This 

decompositional strategy is central to most (or at least a wide range) of our current accounts of 

how to model complex systems, how models explain, how idealizations contribute to model 

explanations, robustness analysis, and how idealized modeling is compatible with scientific 

realism. 

 In this paper, I argue that many of our best scientific models cannot be decomposed in the 

ways required by the decompositional strategy. To be clear, I will not be arguing that 

decomposition is a completely wrong-headed strategy—such decomposition is epistemically 

convenient when it obtains. However, I will contend that the decompositional strategy cannot be 

the whole story since it requires three assumptions that are not typically met by our best 

scientific models. As a result, decompositional accounts of modeling, explanation, idealization, 

robustness, realism, etc. need to be supplemented, or perhaps supplanted, by an alternative 

approach.  

Therefore, after arguing against the decompositional strategy, I will argue for what I call 

the holistic distortion view of how idealizations contribute to scientific models. According to this 

view, most idealized models in science are holistically (i.e. pervasively) distorted representations 

of their target systems (Rice [forthcoming]).  In other words, idealized models in science are 

typically greater than the sum of their accurate and inaccurate parts because they result from the 

complex interaction of various modeling assumptions and idealizations that produce a pervasive 

misrepresentation of most of the features of their target system(s). The use of these holistically 

distorted representations is justified, I will argue, because they allow for the application of 
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(mathematical) modeling techniques that provide epistemic access to the kinds of information 

scientists are interested in. Finally, since this holistic distortion view moves us away from 

focusing on accurate representation relations, I will argue that a promising alternative is to 

appeal to universality classes in order to link idealized models with their target system(s) in ways 

that allow for explanation and understanding (Batterman and Rice [2014]; Rice [forthcoming]). 

Universality can enable scientific modelers to discover relationships of counterfactual 

dependence between certain key features and an explanandum even if those relationships hold 

for drastically different reasons in the idealized model system than they do in the real-world 

system(s). Therefore, even if the model pervasively distorts its target system(s), it may still be 

possible to use the model to explain because many of the patterns of counterfactual dependence 

displayed by the model system will be similar to those of the model’s target system(s). 

 The following section presents several forms of the decompositional strategy that have 

been proposed across the philosophy of science literature and extracts three key assumptions 

required for the decompositional strategy to work. Then, Section 3 argues that many of our best 

scientific models cannot be decomposed in the ways required by those assumptions. In response, 

Section 4 proposes the holistic distortion view of idealized models. The final section concludes 

and offers some suggestions for how to develop the holistic distortion view further. 

2. The Decompositional Strategy 

In this section, I argue that a wide range of accounts, across numerous philosophical debates, can 

all be grouped under a general decompositional strategy that is committed to some version of the 

following three assumptions: 
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(1) Target Decomposition Assumption: The real-world system is decomposable such that the 

contributions of the features that are relevant to (e.g. difference-makers for) the 

occurrence of the target phenomenon can be isolated from the contributions of features 

that are irrelevant (or are largely insignificant) to the target phenomenon.3 

(2) Model Decomposition Assumption: The scientific model is decomposable such that the 

contributions of its accurate parts can be isolated from the contributions of its inaccurate 

(i.e. idealized or abstracted) parts. 

(3) Mapping Assumption: When successful, the accurate parts of the model can be mapped 

onto the relevant parts of the real-world system and the inaccurate parts of the model only 

distort the irrelevant parts of the real-world system.4 

While the following accounts are committed to these assumptions to different degrees and for 

different reasons, I think the discussion shows that they are all equally committed to a general 

decompositional strategy that requires some form of these three assumptions.5 

2.1. Mechanistic modeling and decomposition 

                                                 
3 One reviewer suggested a distinction between a feature’s being irrelevant and a feature’s being relatively 

unimportant. While this distinction can certainly be made, I don’t think this subtle difference in degree has much of 

an impact on the arguments that follow. Nonetheless, to avoid any confusion, my use of irrelevance (and relevance) 

here is meant to capture claims concerning causal irrelevance (e.g. difference making) and relative unimportance 

(e.g. having a negligible impact). The important point is that the target system is supposed to be decomposed into a 

set of relevant (or significant) and irrelevant (or insignificant) features—even though different versions of the 

decompositional strategy will determine what is relevant and irrelevant in slightly different ways. 
4 It is worth noting that Weisberg’s [2013] similarity account seems to have some resources for resisting this 

particular version of the mapping assumption since his account allows the relevant features to be included in the 

model and yet be distorted in various ways that make them less similar than the target system. However, in what 

follows I focus on Weisberg’s account of minimalist idealization in his [2007] paper and in Chapter 6 of his [2013] 

book, which is more directly committed to the mapping assumption as I have formulated it here. 
5 Given the range of views, from a number of debates, it is impossible to find the perfect wording that captures all 

the subtle details of every version of the general decompositional strategy. I think putting these assumptions in terms 

of relevant/irrelevant and accurate/inaccurate does the best job of capturing what these views have in common. 

Indeed, however these accounts determine relevance/irrelevance, the claim is that the model will be 

successful/explanatory just in case it accurately (to some degree) captures the relevant (or most important) features 

and only uses idealizations to distort irrelevant (or largely insignificant) features. Each account shares this general 

approach—although they may establish relevance/irrelevance and accuracy/inaccuracy in slightly different ways. 
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Many forms of decomposition have their roots in the mechanistic approach to modeling complex 

systems (Bechtel and Richardson [1993]; Craver [2006], [2007]; Craver and Darden [2013]; 

Machamer, Darden, and Craver [2000]). In general, the mechanistic approach focuses on 

decomposing systems into their constituent parts and localizing their characteristic activities in 

order to identify the modular (i.e. dissociable) contributions made by the parts of complex 

systems (Bechtel and Richardson [1993], p. 7). However, as Bechtel and Richardson repeatedly 

emphasize: 

Pursuing decomposition and localization is to impose an assumption on the nature of the system 

whose activities one is trying to explain: it is assuming that it is decomposable. A decomposable 

system is modular in character, with each component operating primarily according to its own 

intrinsically determined principles. (Bechtel and Richardson [1993], pp. 24-25) 

Indeed, the mechanistic approach to modeling assumes that the target system is decomposable 

into parts that each make a modular (i.e. dissociable) causal contribution to the functioning of the 

whole (Bechtel and Richardson [1993], p. 24; Levy [2014], p. 5; Woodward [2003], p. 48). It is 

then assumed that the contributions of the set of relevant parts and interactions of the target 

mechanism(s) can be segregated (i.e. isolated) from the rest of the surrounding environment and 

studied independently (Bechtel and Richardson [1993]). 

 In addition, most accounts of mechanistic modeling assume that successful models (e.g. 

those that can explain) are those models whose components and interactions accurately represent 

the relevant (i.e. difference-making) causal relationships among the components of the target 

mechanism(s) and leave out—i.e. abstract away—irrelevant features.6 In fact, the literature on 

mechanisms rarely addresses the relationship between mechanistic models and mechanisms 

themselves since it is routinely assumed that ‘the parts and organization of the model typically 

                                                 
6 It is unclear exactly what role idealizations play in mechanistic modeling accounts. While Kaplan and Craver 

[2011] note that idealization is compatible with their view, they provide no additional details about the role 

idealizations play within mechanistic modeling. 
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map directly to parts and organization of the object being investigated’ (Matthewson and Calcott 

[2011], p. 738). However, some mechanistic views do make it explicit that, ‘the goal is to 

describe correctly enough (to model or mirror more or less accurately) the relevant aspects of the 

mechanisms under investigation’ (Craver and Darden [2013], p. 94).7 Indeed, according to 

mechanistic accounts, for a model to explain is just for it to accurately describe the relevant parts 

of the target mechanism(s). Kaplan and Craver make this idea explicit in their endorsement of 

what they call a model-to-mechanism-mapping (3M) requirement in which mechanistic models 

explain in virtue of having their components, activities, properties, and organizational features 

map onto the relevant causal relations among the components of the target mechanism(s) 

(Kaplan and Craver [2011], p. 611). In sum, successful mechanistic models will accurately 

represent the relevant components and interactions of the target mechanism and will leave out 

irrelevant features. 

2.2. Accounts of scientific explanation that require decomposition 

The decompositional strategy is also prominent in several causal accounts of how models are 

able to explain. Indeed, most causal accounts of explanation require a model that explains to 

accurately represent (or describe) the difference-making causal relationships that produced the 

explanandum and isolate those factors from other irrelevant causes (Strevens [2009]; Woodward 

[2003]).  

 For example, Michael Strevens tells us that, ‘no causal account of explanation—certainly 

not the kairetic account—allows non-veridical models to explain’ (Strevens [2009], p. 320). 

Indeed, on Strevens’s kairetic account, ‘A standalone explanation of an event e is a causal model 

                                                 
7 See also Glennan [2005]. 
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for e containing only difference-makers for e’ in which, ‘the derivation of e, mirrors a part of the 

causal process by which e was produced’ (Strevens [2009], pp. 73-75). In other words, models 

that explain do so in virtue of accurately representing an isolable set of difference-making causal 

factors and leaving out (or idealizing away) other irrelevant causes. 

 In addition, James Woodward suggests that causal models explain when they ‘correctly 

describe’, ‘trace or mirror’, or are ‘true or approximately so’ with respect to the relevant causal 

relations that hold between the explanans and the explanandum (Woodward [2003], pp. 201-

203). Furthermore, in a later paper, Woodward suggests that, ‘good explanations should both 

include information about all factors which are such that changes in them are associated with 

some change in the explanandum-outcome of interest and not include factors such that no 

changes in them are associated with changes in the explanandum-outcome’ (Woodward [2010], 

p. 291). In other words, good explanations should accurately represent difference-making causal 

factors and abstract away irrelevant causal factors. 

 More generally, these causal accounts require that the target system can be decomposed 

into difference-making and non-difference-making causes. They also require that models can be 

used to isolate difference-making causes from other irrelevant factors. Finally, these accounts 

claim that models explain in virtue of accurately representing the isolable set of difference-

making causes that actually produced the target explanandum (and leaving out irrelevant 

factors). 

2.3. Accounts of idealization that require decomposition 

In addition, the decompositional strategy is central to many accounts of how idealizations 

contribute to models that explain (Elgin and Sober [2002]; Strevens [2009]; Weisberg [2007], 



 8 

[2013]). As a first example, Mehmet Elgin and Elliott Sober [2002] argue that optimality models 

in evolutionary biology can still explain despite being idealized because the idealizations only 

distort features that are irrelevant or make little difference to the explanandum. They say:  

A causal model contains an idealization when it correctly describes some of the causal factors at 

work, but falsely assumes that other factors that affect the outcome are absent. The idealizations in 

a causal model are harmless if correcting them wouldn’t make much difference in the predicted 

value of the effect variable. Harmless idealizations can be explanatory (Elgin and Sober [2002], p. 

448). 

In other words, according to Elgin and Sober, idealized models can still explain because they 

only distort features that are irrelevant or largely insignificant. We can see that the distorted 

features are largely insignificant by noting that removing the idealizations from the model—or 

replacing them with true assumptions—would not make much difference to the predictions made 

by the model. Specifically, according to Elgin and Sober, idealized optimality models explain 

when they correctly describe the (difference-making) role of natural selection in bringing about 

the explanandum and only idealize other evolutionary factors that are assumed to be irrelevant to 

the outcome (e.g. drift). 

 In a similar way, Michael Weisberg describes what he calls minimalist idealization as, 

‘the practice of constructing and studying theoretical models that include only the core causal 

factors which gave rise to the phenomenon’ (Weisberg [2007], p. 642). According to Weisberg, a 

minimalist model ‘accurately captures the core causal factors’ since, ‘[t]he key to explanation is 

a special set of explanatorily privileged causal factors. Minimalist idealization is what isolates 

these causes and thus plays a crucial role for explanation’ (Weisberg [2007], pp. 643-5).  
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 Among others, Weisberg cites Strevens’s [2009] account of idealized models as an 

example of minimalist idealization.8 Strevens explains his account of how idealized models can 

explain in this way:  

The content of an idealized model, then, can be divided into two parts. The first part contains the 

difference-makers for the explanatory target...The second part is all idealization; its overt claims 

are false but its role is to point to parts of the actual world that do not make a difference to the 

explanatory target. The overlap between an idealized model and reality...is a standalone set of 

difference-makers for the target. (Strevens [2009], p. 318) 

In other words, according to Weisberg and Strevens, idealized models explain by accurately 

representing, or “overlapping” with, an isolable set of causal difference-makers and using 

idealizations to indicate (or eliminate) those causal factors that are irrelevant.9 Indeed, the 

general goal of these accounts is to show that, ‘the causal factors distorted by idealized models 

are details that do not matter to the explanatory target—they are explanatory irrelevancies. The 

distortions of the idealized model are thus mitigated’ (Strevens [2009], p. 340). 

Before moving on, it is worth addressing some possible tweaks to this kind of 

decompositional approach to idealized models. For example, although Strevens [2009] and 

Weisberg [2007] suggest a rather strict version of the assumptions of the decompositional 

strategy, the view of similarity Weisberg defends in his [2013] book seems to allow for some 

distortion (in terms of dissimilarities) regarding difference-making features. Moreover, rather 

than claiming that a minimalist model must accurately represent all the difference-makers, 

Weisberg might only require the inclusion of the most important core causal factors. In a similar 

way, Angela Potochnik [2015] defends a causal view of explanation on which some causally 

relevant factors can be omitted as long as they do not distort the outcome too much. That is, 

                                                 
8 Weisberg also includes Robert Batterman’s work on asymptotic explanation, Stephan Hartmann’s work on 

physical models, and Nancy Cartwright’s account of abstraction as examples of minimalist idealization. I do not 

think each of these accounts fits Weisberg's minimalist category, but for considerations of space I will not work 

through those details here. 
9 Moreover, Strevens argues, ‘All idealizations, I suggest, work in the same way’ (Strevens [2009], p. 341). 
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Potochnik’s account allows for some causally relevant factors to be neglected by models that 

explain if those factors are relatively unimportant to the causal pattern of interest within the 

current research program (Potochnik [2015], [forthcoming]). However, although Potochnik’s 

account allows for some difference-making causes to be omitted, she also defends a criteria of 

explanatory adequacy such that ‘a causal explanation must account for all of the significant 

causal influences on an event’ (Potochnik [2015], p. 1179). Indeed, like Elgin and Sober’s 

account, Potochnik’s view requires that ‘an explanation must take into account all the causal 

factors with a significant influence on the probability of the event’s occurrence’ (Potochnik 

[2015], p. 1178).10 Moreover, in line with Weisberg [2007], Potochnik suggests that, ‘the 

incorporation of idealizations into explanations is justified by the isolation of a casual pattern—

Weisberg’s ‘core causal factors’ (Potochnik [2015], p. 1173). This kind of view allows for some 

causally relevant factors to be left out of models that explain, but still requires explanations to 

isolate the causes that have a significant impact on the outcome.  

Both these moves attempt to allow for some distortion (or omission) of causally relevant 

factors by making accurate representation of those factors and their explanatory relevance 

matters of degree. Although this would weaken the assumptions of the decompositional strategy 

somewhat, the focus of these accounts is still on accurately capturing (to some sufficiently high 

degree) or “taking into account” the “most important” causal factors; e.g. those that have a major 

impact on the probability of the outcome. As a result, although these views use slightly different 

criteria to determine which causal factors are relevant to the model’s explanation, they still 

                                                 
10 Thanks to an anonymous reviewer for suggesting that I address these potential tweaks. However, although 

Potochnik’s view illustrates one way to potentially weaken the assumptions of the decompositional strategy, it isn’t 

clear to me that her view is an instance of that strategy since she claims there are lots of ways to “account for” causal 

factors without accurately representing them. Moreover, there are important parallels between certain parts of my 

holistic distortion view and the view Potochnik defends, but there are also crucial differences; e.g. my account does 

not require explanations to identify causal patterns. 
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identify an isolable set of relevant causal factors that idealized models must capture in order to 

explain. Consequently, these ways of weakening the assumptions of the decompositional strategy 

still won’t be able to account for the kinds of holistic distortion cases presented below where the 

model pervasively and drastically distorts most of system’s difference-making causes—including 

those that are quite important to the target phenomenon and have a significant impact on the 

probability of its occurrence. In short, simply narrowing the set of relevant features to a 

somewhat smaller set than all causal difference makers, or allowing for minor distortions of less 

significant difference-making features, won’t be able to overcome the challenges to the 

decompositional strategy posed by the kinds of holistic distortion cases presented below.11 

 In sum, all of these accounts require that the real-world system be decomposable into 

difference-making (or relevant) and non-difference-making (or irrelevant) features—even if they 

determine which features are relevant (or important) in slightly different ways. They also require 

that idealized models can be decomposed into their accurate and inaccurate parts. Finally, they 

claim that idealized models explain when they accurately represent (or capture) the relevant 

features (e.g. difference-making causes) and the idealized parts of the model only distort 

irrelevant features. 

2.4. Robustness analysis and decomposition 

Another way philosophers have employed the decompositional strategy is in applications of 

robustness analysis (Levins [1966]; Weisberg [2006]; Wimsatt [1981]). Richard Levins [1966] 

initially argued that, if we investigate a number of distinct models that, ‘despite their different 

assumptions, lead to similar results, we have what we can call a robust theorem that is relatively 

                                                 
11 Allowing for drastic distortion of difference-making features, or suggesting that there is no set of relevant features 

that the model ought to capture, would just be to abandon the core tenets of the decompositional strategy. 
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free of the details of the model’ (p. 20). This result, Levins argues, allows us to determine 

‘whether a result depends on the essentials of the model or on the details of the simplifying 

assumptions’ (p. 20). William Wimsatt [1981] generalizes Levins’s ideas by suggesting that: 

All the variants and uses of robustness have a common theme in the distinguishing of the real from 

the illusory; the reliable from the unreliable; the objective from the subjective; the object of focus 

from the artifacts of perspective; and, in general, that which is regarded as ontologically and 

epistemologically trustworthy and valuable from that which is unreliable, ungeneralizable, 

worthless, and fleeting. (p. 128) 

This is a fairly clear endorsement of the general idea behind the decompositional strategy: 

robustness analysis enables scientific models to be broken down into the dissociable 

contributions made by their accurate (i.e. real) and inaccurate (i.e. illusionary) parts where the 

accurate parts represent the relevant features of the model’s target system(s). 

 In addition, more contemporary accounts of robustness analysis have suggested that when 

we have a robust result we can sometimes infer additional claims about real-world systems. For 

example, Weisberg suggests that scientists can use robustness analysis to discover ‘robust 

properties’ that are the result of a ‘common structure’ of a set of idealized models (Weisberg 

[2006], pp. 736-737). Weisberg then suggests that these mathematical results are typically 

applied by attempting to ‘map [the equations] on to the properties of real or imagined…systems’ 

(Weisberg [2006], p. 738). This translates the common mathematical structure of the models into 

a common causal structure of real (or possible) systems. As a result, the modeler can claim that 

there is a robust theorem that holds between the common causal structure and the robust property 

in real-world systems. These further steps require that the model’s target systems can be 

decomposed into a common causal structure and other irrelevant factors in ways that mirror the 

decomposition of the set of idealized models into a common mathematical structure and other 

auxiliary assumptions. Moreover, the method requires that we can map the isolable common 
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structure of the models onto the relevant causal structure in the real-world system(s) that is 

responsible for the robust property. As a result, Weisberg’s description of how to fully apply 

robustness analysis to real-world systems requires a version of all three assumptions of the 

decompositional strategy.12 

2.5. Scientific realism and decomposition 

Finally, many defenses of scientific realism make use of a version of the decompositional 

strategy by suggesting that scientific models and theories are partially accurate representations. 

These are sometimes referred to as “selective confirmation” approaches to defending scientific 

realism (Leplin [1997]; Peters [2013]; Stanford [2003]). For example, Christopher Pincock 

[2011] has applied a version of the decompositional strategy in precisely this way. The general 

idea is that models can be decomposed into parts and we can believe that our best scientific 

models are sometimes accurate with respect to certain relevant parts of real-world systems. 

Therefore, we can maintain a version of realism because scientific models are sometimes 

accurate representations of the relevant features of real-world systems even if they distort other 

(presumably irrelevant) features. 

2.6. Three assumptions of the decompositional strategy 

What I have tried to show is that for a wide range of accounts in the philosophical literature there 

is an assumed mapping between the decomposition of scientific models and the decomposition 

of their target systems.13 More specifically, I argue that the accounts detailed above each adopt a 

                                                 
12 While not all applications of robustness analysis require a decompositional approach, often the inferences made 

require some form of those assumptions. For example, other defenders of robustness analysis have suggested that 

robustness analysis can allow us to ‘be more confident that the result depends not on the falsities we have introduced 

into the modeling, but rather on the common components’ (Kuorikoski et al. [2010], p. 551). 
13 Of course, the decompositional strategy might just claim, “natural systems and models have parts”, but that is a 

rather uncontroversial claim and is too widely applicable to be interesting. 
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general decompositional strategy that requires some version of the target decomposition 

assumption, model decomposition assumption, and mapping assumption that were presented at 

the beginning of this section.  

3. Against the Decompositional Strategy 

In order for the decompositional strategy to succeed, the three conditions given above must be 

met. However, in this section, I provide examples of how the model decomposition assumption 

and the mapping assumption can, and often do, fail to hold. Moreover, I argue that these cases 

are representative of much larger classes of models that will systematically fail to meet the 

requirements for applying the decompositional strategy. While I think objections can also be 

raised regarding the target decomposition assumption, I think philosophical accounts of 

modeling, explanation, idealization, and robustness ought to be kept independent of metaphysical 

commitments about the nature of real-world systems whenever possible.14 Consequently, I will 

simply note that there is no clear argument for requiring such a strong metaphysical assumption 

regarding real-world systems and instead focus my critique on the model decomposition 

assumption and the mapping assumption.  

3.1. Many scientific models don’t decompose that way 

The first problem with the decompositional strategy is that many of our best scientific models 

cannot be decomposed into the isolable contributions made by their accurate and inaccurate 

parts. According to the decompositional strategy, we should be able to isolate the contributions 

of the accurate part(s) of our models from the contributions made by their idealized part(s). This 

                                                 
14 I also think that the realism debate should avoid having philosophical accounts of realism imposing metaphysical 

structures on the world a priori. Instead, our metaphysical claims about the world ought to be epistemically justified 

by first looking at the nature of our models/theories and how they are able to relate to the world. However, filling 

out the details of this proposal would take us too far away from main focus of this paper. 
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implies that we should, at least in principle, be able to remove or replace the idealizations within 

our scientific models while leaving the contributions of the isolated accurate components intact. 

In other words, if scientific models are truly decompositional in this way, then the idealizations 

within our best scientific models should be eliminable in the sense that they could in principle be 

removed (or replaced) without affecting the parts (or contributions) of the model that accurately 

describe the relevant parts (or features) of the model’s target system(s). However, in this section, 

I argue that for a wide range of scientific models, idealizations cannot be quarantined in this way 

and their distortions are pervasive due to the fact that they are essential to the foundational 

mathematical frameworks of those models. Although a model’s having ineliminable idealizations 

and being unable to decompose the contributions of the model’s accurate and inaccurate parts are 

conceptually distinct, we can test the model decomposition assumption by considering what 

occurs to the contributions of the (purportedly) accurate parts of the model when the 

idealizations are eliminated.15 In many cases, the idealizations are essential (i.e. ineliminable) for 

the mathematical frameworks used in the model, which results in the pervasive distortion of most 

of the system(s) features, which in turn leads to the representation of the relevant (or important) 

parts of the system being distorted through the lens of the idealized mathematical framework. 

Consequently, the parts of the model that are supposed to be accurate representations of relevant 

features can only make their contributions within the context of the idealized mathematical 

modeling framework that pervasively distorts them (and many other features). When this is the 

case, the contributions of the idealized parts of the model cannot be isolated from the 

contributions made by the accurate parts of the model, but are instead intertwined within the 

pervasively distorted representation provided by the mathematical model.  

                                                 
15 Thanks to an anonymous reviewer who helped me be clearer about these distinctions and the connections between 

these concepts. 
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 As a first example, we can consider the ideal gas law, which states that PV = nRT where 

P is pressure, V is volume, T is temperature, n is the number of moles of gas, and R is the 

constant. This highly idealized equilibrium model is derived from simpler laws of gases (e.g. 

Boyle’s Law and Charles’ Law) and can be used to calculate macroscopic changes of measurable 

variables in real gases. The ideal gas law is at the heart of the kinetic theory of gases, which 

utilizes the Maxwell-Boltzmann distribution for the velocities of molecules. This distribution is 

derived by imposing a particular probability distribution on the micostates of the system and then 

averaging over those microstates to discern macroscale properties of gases. More specifically, 

the Maxwell-Boltzmann distribution requires that one assume that the molecules are in constant 

random motion, do not interact, and have velocities that are statistically independent of one 

another. This enables one to model the speed of the molecules using a Gaussian distribution (i.e. 

a bell curve) by applying the central limit theorem. Importantly, however, the Maxwell-

Boltzmann distribution applies only to ideal gases. In real gases, there are several additional 

factors (e.g. van der Waals interactions, vertical flows, relativistic speed limits and quantum 

exchanges) that make the gas particles’ speeds often very different from those specified by the 

Maxwell-Boltzmann distribution. 

 Indeed, the exact calculations provided by the ideal gas law require a long list of 

idealizing assumptions including: 

1. The gas consists of a large number of identical molecules in constant random motion. 

2. The volume occupied by the gas molecules is infinitesimally small compared to the 

volume of the container; i.e. the molecules do not take up any space. 
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3. The velocity (components) of each of the particles are statistically independent of one 

another. 

4. The molecules exert no long-range forces on one another and there are no intermolecular 

forces between the molecules. 

5. Collisions between the molecules and the walls of the container are perfectly elastic (or 

are simply assumed not to occur). 

6. The gas obeys the processes of classical Newtonian mechanics. 

Of course, each of these assumptions will fail to hold in many real-world gases, and no real-

world gas will satisfy all six of them. Despite these distortions, the ideal gas law can be used to 

explain and understand various behaviors of real gases. Indeed, many real gases behave close to 

the ways predicted by the ideal gas law and it has been used to explain fundamental features of 

gas behavior such as diffusion and pressure.  

 We might, then, ask the following question: What would the ideal gas law look like 

without these idealizations? Put slightly differently, which parts of the ideal gas law are the 

dissociable accurate parts that are describing the relevant (difference-making) parts of reality? I 

contend that we cannot really answer either of these questions because the idealizing 

assumptions made by the model are introduced to apply foundational mathematical techniques 

that result in a pervasively distorted representation of actual gases. Put differently, the 

contributions made by the purportedly accurate parts of the model only make their contributions 

within an idealized mathematical modeling framework that pervasively distorts those features. 

As a result, the contributions of the idealized and (purportedly) accurate parts of the model are 

intimately intertwined within a pervasive misrepresentation of the model’s target system(s). 
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 The issue here is that—contra Strevens [2009]—the idealizing assumptions within the 

ideal gas law are not simply noting that certain features of the gas are known to be irrelevant. 

Instead, they pervasively distort the components and interactions of real gases in order to allow 

for the application of mathematical tools—e.g. statistical modeling techniques—that enable 

scientists to extract explanatory information about the system. Without these idealizations the 

mathematical foundations of the model would not be applicable. It is precisely because these 

idealizations are essential to the foundational mathematical techniques involved that they are 

ineliminable from the explanations provided by the model and their distortions are so pervasive. 

The important point is that there is not an isolable part of the ideal gas model that accurately 

represents some dissociable set of difference-makers in real gases and is unaffected by the list of 

idealizing assumptions given above. Instead, an ideal gas is a fundamentally different kind of 

system—an idealized model system—that allows physicists to investigate, explain, and 

understand real-world gases, but does not accurately represent some dissociable set of difference 

makers of real gases. The fact that these idealizations are essential to the mathematical 

frameworks employed by the model demonstrates their pervasive effect on the overall 

description provided by the model. It also shows that it will be impossible to isolate the 

contributions made by some accurate part(s) of the model from the contributions made by these 

inaccurate (i.e. idealized) parts. The distortions introduced are simply too pervasive because they 

are constitutive of the foundational mathematical techniques required for the model to provide 

the explanation. 

 Parallel applications of mathematical modeling can be found in biology (Ariew et al. 

[2015]; Rice [2012], [2015], [2016]; Walsh et al. [2002]). Indeed, the foundational assumptions 

made by R. A. Fisher in developing population genetics were inspired by the assumptions 
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underlying the kinetic theory of gases (Morrison [1996], [2004], [2015]).16 Like Maxwell and 

Boltzmann, Fisher’s general approach was to make various idealizing assumptions about the 

nature of the individual components of the system and their interactions in order to develop 

general statistical models of the large-scale behaviors of populations (Morrison [2004]). 

Assuming that the individual-level events of the population are random and statistically 

independent allowed Fisher to apply the central limit theorem, which tells us that such a sample 

will conform to the normal distribution (i.e. a Gaussian bell curve). Then, by assuming the 

population is infinitely large, one can apply various laws of large numbers to eliminate sampling 

error (in this case genetic drift).17 Finally, Fisher averaged over the individual-level events in 

order to identify statistical features of the overall distribution of genotypic trait types and their 

fitnesses. In combination, these assumptions allowed Fisher to assume that biological 

populations approximated a normal distribution whose mean value was the expected outcome 

(presumably due to natural selection). As a result, Fisher argued that biological populations 

could be modeled statistically simply by knowing the mean and variance of the overall 

population. In other words, Fisher’s statistical assumptions allowed him to model evolving 

populations in such a way that no knowledge of the parts or their interactions is required. As 

Margaret Morrison puts it, Fisher saw that, ‘the kinetic theory had shown that knowledge of 

particular individuals was not required in order to formulate general laws governing the behavior 

of a population’ (Morrison [1996], p. S319).  

 More importantly, with Fisher’s statistical modeling we again see that when certain 

idealizing assumptions are made about the components of the system, scientists can use various 

                                                 
16 Fisher himself tells us that: ‘The whole investigation may be compared to the analytical treatment of the Theory of 

Gases’ (Fisher [1922], p. 321). 
17 The law of large numbers states that, as the samples size increases, the average of the quantities sampled will be 

closer to the expected outcome. 
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mathematical techniques to construct models with which to investigate, explain, and understand 

real-world systems.18 In order to do so, however, often requires that they move to a drastically 

distorted representation of those systems in order to apply those modeling techniques. The 

success of Fisher’s approach was due to his replacing actual populations with highly idealized 

model populations that relied on the statistical assumptions he adopted from gas theory. As a 

result of his idealizing assumptions, Fisher constructed an infinite model population in which 

evolution did not involve migration, genetic recombination, genetic interaction, or drift. This 

resulted in a pervasively distorted representation of the evolutionary processes in any real-world 

population. Indeed, Fisher’s work on population genetics was able to provide various 

explanations ‘only by invoking a very unrealistic and abstract model of a population’ (Morrison 

[2015], p. 24). These kinds of statistical modeling techniques would later become the foundation 

of modern population genetics. The most important parallel, for my purposes, is that once again 

the contributions made by the idealizing assumptions cannot be isolated from the contributions 

made by the accurate parts of these models because the idealizing assumptions are necessary for 

applying the mathematical framework used by these scientific modelers. 

 While some idealized models can perhaps be decomposed into the contributions made by 

their accurate and inaccurate parts, I argue that this decomposition is impossible for many of our 

best scientific models because the idealizations are essential to the foundational mathematical 

frameworks used within those models. As a result, without the idealizations, the mathematical 

techniques will not be applicable and so the explanation and understanding provided by the 

                                                 
18 As Morrison explains, ‘Fisher's mathematisation of selection created a new framework in which its operation was 

understood as an irreducibly statistical phenomenon, a reconceptualisation that emerges in conjunction with the 

application of specific mathematical...techniques’ (Morrison [2015], p. 41). See Walsh et al. [2002] and Ariew et al. 

[2015] for a similar interpretation. 
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model would be inaccessible.19 In addition, the essential role these idealizations play in the 

mathematical foundations of many scientific models shows that the contributions of the 

inaccurate parts cannot be isolated in the way required by the decompositional strategy. Instead, 

the purportedly accurate parts can only make their contributions within an idealized modeling 

framework that drastically distorts the model’s target system(s). Therefore, contrary to the 

decompositional strategy, in many cases idealizations are not innocent bystanders that can be 

quarantined by only distorting irrelevant (or insignificant) features; instead, they are deeply 

invested collaborators that allow for the application of various mathematical modeling 

techniques. 

3.2. Many idealizations distort difference-making features 

The second challenge to the decompositional strategy is that even if we assume the real-world 

system and the idealized model are decomposable in the ways required, the model’s idealizations 

will often distort difference-making (i.e. relevant) features of the model’s target system(s). As a 

result, we cannot map the accurate parts of the model onto what is relevant and its inaccurate 

parts onto what is irrelevant. 

 For example, the Hardy-Weinberg equilibrium model is used to explain and understand 

various features of heredity and variation. The model establishes a mathematical relation 

between genotypic frequencies that captures the genetic structure described by Mendelism. The 

model tells us that if we have a pair of alleles, A1 and A2, at a particular locus and in the initial 

population the ratio of A1 to A2 is p to q, the distribution for all succeeding generations will be, 

                                                 
19 It is, however, possible that removing or replacing the idealizing assumptions would result in a modified version 

of the model, a different kind of model, or a different explanation. The most important point here is not whether the 

idealizations can be eliminated from the model, but instead is the pervasive nature of the distortions they introduce 

due to their role in the foundational mathematical frameworks of the model. This is enough to show the failure of the 

model decompositional assumption. My thanks to an anonymous reviewer for helping me clarify this point. 
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 p2A1A1 + 2pqA1A2 + q2A2A2 

regardless of the distribution of genotypes in the initial population (or generation). This 

mathematical model describes the frequencies of different genotypes at a single locus in an 

infinitely large population, in which mutation, selection, sampling error, and migration do not 

occur, all members of the population breed, all mating is completely random, all organisms have 

the same number of offspring, there is no intergenerational overlap, and all these conditions are 

held constant. However, each of these distorted features makes a difference to the evolution of 

most (if not all) real-world biological populations. For example, in all real finite populations 

there will be some non-negligible chance that trait frequencies will diverge from the values 

predicted by selection; i.e. drift makes a difference to every real-world population (Rice [2015]). 

As a result, removing sampling error (i.e. drift) from this mathematical model distorts a 

difference-making feature of every real-world population. In addition, the Hardy-Weinberg 

model assumes that there is no intergenerational overlap, but this is false of (almost) every real-

world population and is a difference-making feature for many evolutionary outcomes (Levy 

[2011]).  

In addition, as was the case in the examples above, many of these idealizing assumptions 

are necessary for the mathematical foundations of the model (Morrison [2015]). For example, 

without the assumptions of infinite population size and random mating, the stability of genotypic 

frequencies across generations will be violated—that is, without these assumptions the very 

mathematical framework used by the model that allows it to capture key features of heredity and 

variation will no longer be applicable. 
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 More generally, biological modelers frequently utilize several idealizations that distort 

the actual processes involved in mating, genetic recombination, inheritance, and selection in 

order to apply various mathematical modeling techniques. In doing so, they often distort features 

of real-world systems that make a difference to their evolutionary outcomes (Potochnik 

[forthcoming]; Rice [2012], [2015], [2016]). Indeed, using idealizations that distort difference-

making factors is pervasive in biological modeling—even within mechanistic modeling (Love 

and Nathan [2015]).20  

What is more, idealization of difference-makers is widespread in several other sciences; 

e.g. models in chemistry and physics can be used to explain despite misrepresenting the 

fundamental kinds of components, interactions, and properties that exist in real systems 

(Batterman [2002]; Batterman and Rice [2014]; Bokulich [2011], [2012]; Morrison [2015]).21 As 

a result of their distortion of difference makers, the distortions introduced by the inaccurate parts 

of these models cannot be isolated to the distortion of the irrelevant parts (or features) of their 

target system(s). Therefore, once again, for a wide range of cases across numerous sciences one 

of the three core assumptions required to apply the decompositional strategy fails to hold. 

4. An Alternative Approach: The Holistic Distortion View of Idealized Models 

The general goal of the decompositional strategy is to show that the accurate parts of the model 

are what “do the real work” while the inaccurate parts of the model are justified by distorting 

only what is known (or assumed) to be irrelevant. However, the arguments above show that for a 

                                                 
20 For example, even more distortion of difference-making features is involved in game-theoretic modeling, which 

routinely uses idealizing assumptions such as random pairing of players, symmetric contests, constant payoff 

structures across iterations of the game, etc. 
21 For example, Alisa Bokulich ([2011], [2012]) discusses various cases in which fictions that drastically distort 

relevant features of the target system are employed to explain in physics and chemistry. Batterman and Rice [2014] 

also discuss examples of models in physics and biology that distort difference-making causes and yet are able to 

provide explanations. 
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wide range of cases across many scientific disciplines this decompositional strategy will fail. As 

a result, an alternative approach is needed. In what remains, I will argue for what I call the 

holistic distortion view of idealized models (Rice [forthcoming]). In its most general form, 

holism is just the thesis that the whole is more than the sum of its parts. I contend that many 

idealized models in science are holistic distortions that cannot be decomposed into the 

contributions made by their accurate and inaccurate parts.  

 It is important to note, however, that my holistic distortion view does not (directly) entail 

other more traditional forms of holism concerning semantics, metaphysics, or confirmation. 

Instead, I only advocate a more holistic approach concerning philosophical attempts to analyze 

the use of idealized models in science. Specifically, I contend that many (if not most) idealized 

models should be characterized as holistically distorted representations of their target system(s) 

that are greater than the sum of their accurate and inaccurate parts. The decompositional strategy 

mistakenly ignores the myriad ways in which the explanations and understanding provided by 

scientific models are typically the result of a rich and complicated mixture of various modeling 

assumptions whose contributions cannot be studied in isolation. Therefore, my holistic view is a 

methodological prescription for philosophers’ attempts to understand how to model complex 

systems, how models explain, how idealizations contribute to model explanations, robustness 

analysis, and how idealized modeling is compatible with scientific realism. Most importantly, 

philosophy of science must move beyond accounts of these aspects of modeling that require the 

assumptions of the decompositional strategy. 

 The second part of my view is that idealizing assumptions that result in holistic 

distortions are often essential to the explanations provided by scientific models because they 

allow for the application of various (mathematical) modeling techniques (Cartwright [1983], Ch. 
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7; Rice [forthcoming]). In addition to the cases discussed above, a particularly instructive 

example is physicists’ use of the thermodynamic limit. The thermodynamic limit ‘is the limit in 

which (roughly speaking) the number of particles of the system…approaches infinity’ 

(Batterman [2010], p. 7). What is important to note is that often, ‘This limiting idealization is 

essential for the explanation because for a finite number of particles the statistical mechanical 

analogs of the thermodynamic functions cannot exhibit the nonanalytic behavior necessary to 

represent the qualitatively distinct behaviors we observe’ (Batterman [2010], p. 7). Indeed, for a 

wide range of modeling techniques in physics, the thermodynamic limit is an essential 

mathematical operation. For example, as Morrison explains in the case of modeling phase 

transitions: 

The occurrence of phase transitions requires a mathematical technique known as taking the 

‘thermodynamic limit,’ N→∞; in other words we need to assume that a system contains an infinite 

number of particles in order to understand the behavior of a real, finite system…[since] the 

assumption that the system is infinite is necessary for the symmetry breaking associated with 

phase transitions to occur. In other words, we have a description of a physically unrealizable 

situation (an infinite system) that is required to explain a physically realizable phenomenon (the 

occurrence of phase transitions). (Morrison [2009], p. 128).22 

Like the cases discussed above, the thermodynamic limit is not introduced simply as a way of 

ignoring what is irrelevant to the target explanandum or as a method for calculational 

expediency. Instead, these idealized mathematical descriptions function as a necessary condition 

for using the mathematical techniques required to explain and understand the phenomenon of 

interest (Batterman [2002], Morrison [2009], Kadanoff [2000]). 

 As I noted above, additional instances of the use of idealizations to allow for the 

application of mathematical techniques can be found across biological modeling. As another 

example, optimization models that provide adaptationist explanations make use of numerous 

                                                 
22 Or as physicist Leo Kadanoff [2000] puts it, ‘The existence of a phase transition requires an infinite system. No 

phase transitions occur in systems with a finite number of degrees of freedom’ (p. 238). 
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idealizations that allow for exact calculations of the equilibrium point of the evolving system 

(Rice [2012], [2015], [2016]). Rather than distorting irrelevant factors so scientists can focus on 

the accurate representation of difference-making features (e.g. natural selection), these models 

purposefully move scientists away from even attempting to accurately represent some isolable 

part of the dynamical processes that led to the explanandum. Instead, in these cases, the 

idealizing assumptions enable scientists to apply various mathematical techniques that allow 

them to calculate exactly how changes in the parameters involved in the system’s constraints and 

tradeoffs will result in changes in the expected equilibrium point of the system. The explanation 

is then provided by showing how the optimal strategy (counterfactually) depends on those 

constraints and tradeoffs—despite the fact that the optimal strategy is the expected outcome 

within the idealized model for very different reasons than in the model’s target system(s). 

 Indeed, as Mark Pexton notes, in many scientific models there are ‘ineliminable 

misrepresentations of the true ontology of a system…[They] are necessary in some models 

because we require them to frame a system in a certain way in order to extract modal 

information’ (Pexton [2014], p. 2344). It is this last part about the way in which idealizations 

allow scientists to frame the system as a whole to extract modal information about the system 

that I think has been largely missed by the philosophical literature (although Cartwright [1983], 

Ch. 7 and parts of Potochnik [2015] are important exceptions).23 The source of this failure is that 

most philosophers (and many scientists) have sought to quarantine idealization in order to show 

that the falsehoods used in science are “harmless” because they only distort irrelevant or 

                                                 
23 Potochnik’s [2015] account in which idealizations can be used to frame the system in different ways that make 

different causal patterns accessible is similar in that the reframing of the system make positive epistemic 

contributions. The key difference between our views is that I would resist the claim that this is always done by 

enabling the model system to display a causal pattern. 
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unimportant features and do not “get in the way” of the accurate parts of scientific models that 

do the real work. 

 As an alternative project, I suggest that philosophers of science ought to provide accounts 

of the pervasive and unique contributions that idealizations that distort difference-making (i.e. 

relevant) features can make to models conceived of as holistic distortions; e.g. by enabling 

scientific modelers to use certain mathematical modeling tools that extract the explanations and 

understanding they are interested in.24 Rather than attempting to isolate individual idealizations 

and show that their distortions are irrelevant (one at a time), we need to analyze how the practice 

of constructing holistically distorted models is able to consistently make positive contributions to 

achieving the goals of scientific inquiry—e.g. explanation and understanding—without having to 

provide an accurate representation of an isolated set of difference-making features.25 

 Here, then, is the core of my holistic distortion view. First, in a wide range of cases, 

idealized models pervasively distort the fundamental nature of the entities, processes, and 

features of their target systems—including difference makers. That is, their distortions are 

holistic, rather than piecemeal. Second, these idealizing assumptions often move scientists to an 

entirely different representational framework in which the mathematical tools necessary to 

explain and understand the phenomenon of interest are applicable. These different mathematical 

modeling frameworks represent different features and patterns of the system (e.g. statistical 

patterns at the population level) in different ways (e.g. as continuous processes or isolable 

                                                 
24 This is not intended to suggest that no philosophers have discussed some of the positive contributions of 

idealizations (e.g. see Strevens [2009] or Potochnik [2015]), only that I advocate focusing on the development of 

those accounts in line with the holistic distortion view that allows for the distortion of difference-makers instead of 

accounts that require the assumptions of the decompositional strategy. These contributions also provide access to 

explanations that would otherwise not be accessible rather than accomplishing what could also be accomplished by 

the use of abstraction of irrelevant features. Consequently, these contributions go beyond the indication of the 

irrelevance of some features—this is what makes these idealizations’ contributions to holistic distortions unique. 
25 I do not intend to suggest that these are the only goals of scientific inquiry. They are merely representative of the 

kinds of goals that scientists have been able to achieve with holistically distorted models. 
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factors) and allow for the use of different techniques for deriving the behavior of the system (e.g. 

using statistical limit theorems). As a result, these idealizations are often necessary for the 

models to provide a particular explanation (or understanding) of the target phenomenon—one 

that is sometimes the only explanation available. A model without these idealizing assumptions 

would be unable to use the mathematical techniques required for extracting the explanatory 

information of interest (Rice [forthcoming]). The goal, therefore, should be to justify scientists’ 

use of these holistically distorted representations in terms of the explanations and understanding 

they provide that would otherwise be unattainable. Analyzing these unique contributions of 

idealizations that distort difference-making features is in stark contrast to trying to show that the 

inaccurate parts of scientific models distort only what is irrelevant (or only tell us about what is 

irrelevant).  

 The remaining challenge, then, is to show how such holistically distorted representations 

can still provide explanatory information given that most accounts of explanation (e.g. those 

discussed above) require accurate representation of difference-making features in order for 

models to explain. While I advocate a pluralistic approach to understanding the relationships 

between idealized models and real-world systems, one particularly promising strategy is to 

appeal to a feature called universality (Batterman and Rice [2014]; Rice [forthcoming]). The 

term universality comes from mathematical physics, but in its most general form it is just an 

expression of the fact that many systems that are (perhaps extremely) heterogeneous in their 

physical features will nonetheless display similar patterns of behavior at macroscales. The group 

of systems that will display similar macrobehaviors despite differences in their physical details 

are said to be in the same universality class. As physicist Leo Kadanoff [2013] puts it, 

‘Whenever two systems show an unexpected or deeply rooted identity of behavior they are said 
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to be in the same universality class’ (p. 178). In other words, universality guarantees that a class 

of systems, called the universality class, will display the same general patterns of macrobehavior 

even if the components, interactions, dynamics, and physical details of those systems are very 

different. For example, universality can connect the behavior of systems as diverse as magnets 

and fluids (Batterman [2002]). It can also show why a large class of biological systems will all 

reach the same equilibrium point (e.g. a 1:1 sex ratio) despite differences in the kinds of species, 

methods of inheritance, size of the population, etc. (Batterman and Rice [2014]). In addition, 

within these universality classes there are often various model systems—that is, universality 

classes that include a range of real-world systems will often also include some (imaginary or 

possible) systems described by scientific models. When this is the case, the model system(s) and 

the real-world system(s) will display similar macroscale behaviors despite having perhaps drastic 

differences in their fundamental components, interactions, and other features. This connection, I 

contend, is often what enables scientists to use highly idealized models that holistically distort 

their target system(s) to explain various behaviors of their target system(s). In other words, 

universality can show us that there is a class of systems, which includes the idealized model 

system and its target system(s), that will exhibit the same macroscale patterns of behavior and 

this link is often what allows scientists to justifiably use holistically distorted models to explain 

and understand the behavior of real systems (Batterman and Rice [2014]; Rice [forthcoming]).  

 It is important to distinguish this appeal to the empirical fact of universality to link model 

systems with their target systems from the use of mathematical techniques to explain universality 

itself. For example, the renormalization group (RG), has been used to explain why a wide range 

of fluids (and magnets) all display universal behaviors near their critical points (Batterman 

[2002]). RG is a mathematical technique that effectively transforms a system's original 
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Hamiltonian into another Hamiltonian that describes a system with fewer degrees of freedom. 

Repeatedly applying this technique at successively larger scales eventually identifies a fixed 

point Hamiltonian that preserves the original Hamiltonian's form and phenomenological 

behavior, but eliminates many of the irrelevant physical details. Furthermore, demonstrating that 

diverse fluids all flow to the same fixed points in the space of Hamiltonians under repeated 

applications of RG explains why those systems will display the same macrobehavior despite 

perhaps drastic differences in their physical details. As a result, RG enables physicists to 

explicitly delimit the class of systems that will display similar macroscale behaviors; e.g. having 

the same critical exponent when undergoing a phase transition.  

RG effectively differentiates a set of relevant features from a set of microphysical details 

that are irrelevant and, in doing so, explains why the universal macroscale behaviors are stable 

across that class of systems—this is what enables RG to provide an explanation of universality. 

In other words, rather than aiming for the construction of models that accurately represent 

relevant features and idealize irrelevant features, RG is a mathematical modeling technique—

whose application also requires the thermodynamic limit—that systematically distinguishes 

those features that are relevant and irrelevant in order to provide an explanation of the stability of 

the macroscale behaviors across a diverse range of (real, possible, and model) systems. 

Moreover, in addition to explaining various instances of universality using RG, physicists have 

also discovered several so-called “minimal models” (e.g. the lattice gas automaton model) within 

those universality classes that display the same patterns of behavior and can be used to further 

investigate and explain the behaviors of real-world systems (Batterman and Rice [2014]).26 

While providing additional demonstrations that explain universality itself will typically 

                                                 
26 Furthermore, while RG is an instructive example, universality can also be explained using other methods; e.g. 

appealing to some kind of multiple realizability. 
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provide greater degrees of understanding and justification (and may be required to provide a 

complete explanation for some explananda), providing a complete explanation of why 

universality occurs (e.g. by using RG) is not a requirement for appealing to the empirical fact of 

universality to connect the behavior of various real, possible and model systems in ways that 

allow for idealized models to be justifiably used to discover explanatory information.27 That is, 

scientists can justifiably use idealized models within a universality class to explain the behaviors 

of real-world systems in that class even when they fail to have a complete explanation of why 

that universality class occurs. Indeed, there are many universality classes out there that contain 

various real, possible, and model systems, but whose universality has yet to be explicitly 

delimited (i.e. specifying precisely the range of systems in the class) or completely explained 

(i.e. explaining why those patterns are stable across that class of systems). 

In this context, the universality class consists of the set of real, possible and model 

systems that display the patterns of counterfactual dependence of interest to the scientific 

modeler. In some cases, the idealized models that are within the same universality class as their 

target systems will just be those that accurately represent the difference-making features of those 

systems.28 However, in many other cases, the same macrobehaviors will be produced by different 

sets of difference-makers and extremely heterogeneous components and interactions across a 

range of possible systems. In these cases, scientists often construct a pervasively distorted model 

in order to apply the (mathematical) modeling techniques and theories they have on hand. The 

resulting idealized model is then used to investigate how various (hopefully measurable) features 

are counterfactually related to the phenomenon of interest. When the holistically distorted model 

                                                 
27 Indeed, scientists often explain by appealing to idealized models that are in the same universality class as their 

target systems before any explicit delimiting or explaining of universality has been attempted. 
28 For example, this will occur when the same set of difference-makers are necessary and sufficient conditions for 

the occurrence of the target explanandum in every real and possible system. 
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is (or perhaps can be shown to be) in the same universality class as the system(s) of interest, 

scientists can justifiably use the holistically distorted model to explain because it can be used to 

discover information about which features are counterfactually relevant (and irrelevant) to the 

target explanandum.  

 For example, the ideal gas law need not accurately represent the ontology of real gases or 

the actual processes that relate pressure and temperature in order to show us how pressure 

counterfactually depends on temperature (and vice versa). All that is required is that the model 

enable us to see how changes in one feature will result in changes in the other and universality 

can guarantee that those macroscale patterns of counterfactual dependence will be preserved 

even though the model is a holistically distorted representation of the components, processes, 

and interactions of real gases. This is because the macroscale patterns of counterfactual 

dependence between measurable features of real gases will be realized by any system in the 

universality class—including the pervasively distorted model system.  

 As a second example, a biological optimization model can show us how changes in the 

constraints and tradeoffs among various features of the system will change the equilibrium point 

of the evolving population even if the model describes a selection process that is nothing like the 

one that produced the explanandum in its real-world target system(s) (Rice [2012], [2015], 

[2016], [forthcoming]). The explanation is provided by showing how the equilibrium point of the 

evolving system is counterfactually related to certain features of the target system, not by 

accurately representing those features or some modular part of the dynamics that connects those 

features to the explanandum in the real-world system. In these cases, biological optimization 

models show how the target explanandum is counterfactually dependent on certain constraints 

(e.g. the amount of resources available) and tradeoffs (e.g. between average energy intake and 
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average predation risk) even though the model represents these features in a highly distorted 

way. Moreover, the optimization model describes a selection process—which connects these 

features to the target explanandum—that drastically distorts the selection process that occurs in 

real biological populations; e.g. these models typically represent selection without a temporal 

dimension and assume that offspring perfectly resemble their parents within an infinitely large 

population. Nonetheless, biologists have discovered that (and in some cases demonstrated why) 

these kinds of counterfactual dependencies are stable across a range of real, possible, and model 

systems that are heterogeneous in many of their details including having different species, 

interactions, inheritance processes, etc. That is, although it describes a system that is drastically 

different from its target system(s), the optimization model—in virtue of being in the same 

universality class—still displays certain macroscale patterns of counterfactual dependence 

between certain constraints and tradeoffs and the target explanandum that can be used to provide 

an explanation. Revealing these patterns of counterfactual dependence by applying mathematical 

modeling techniques, however, is importantly different from accurately representing those 

features and the ways they produce (or result in) the target explanandum in real-world systems. 

In sum, highly idealized models can allow scientists to discover counterfactual 

dependencies that hold between certain features and the target explanandum without having to 

accurately represent the entities, processes, mechanisms, or difference-makers of their target 

system(s). Importantly, this kind of information about counterfactual dependencies is widely 

held to be important to many forms of explanation (Bokulich [2011], [2012]; Rice [2015]; 

Woodward [2003]). As Woodward puts it, ‘[an] explanation must enable us to see what sort of 

difference it would have made for the explanandum if the factors cited in the explanans had been 

different in various possible ways’ (Woodward [2003], p.11). In addition, Bokulich argues that, 
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‘in order for a model M to explain a given phenomenon P, we require that the counterfactual 

structure of M be isomorphic in the relevant respects to the counterfactual structure of P’ 

(Bokulich [2011], p. 39). Indeed, information about counterfactual dependence is central to 

several accounts of how models are able to explain (Bokulich [2012]; Rice [2015], 

[forthcoming]; Saatsi and Pexton [2013]; Woodward [2003]).29 

 The key thing to notice is that idealized models can provide information about 

counterfactual dependencies even when they fail to accurately represent the system’s 

components and interactions or the actual processes that link those components and interactions 

to the target explanandum. In many instances this is because universality guarantees that the 

model system’s patterns of macroscale behavior will be similar to those of the target system(s) 

even if the actual entities and processes of those systems are extremely different. In other words, 

universality can enable scientific modelers to discover relationships of counterfactual 

dependence between certain features and an explanandum even if those relationships hold for 

drastically different reasons in the idealized model system than they do in the real-world 

system(s). Therefore, even if the model drastically and pervasively distorts the fundamental 

nature of the entities and processes of real-world systems in order to use various mathematical 

modeling techniques, it can still be used to explain because many of the patterns of 

counterfactual dependence that hold in the model system will be similar to those of real-world 

systems—those counterfactual relations will just hold for (perhaps very) different reasons in the 

model system and perhaps only in limiting cases. Generalizing the concept of universality allows 

us to capture this stability of various patterns of behavior (e.g. counterfactual dependencies) that 

are largely independent of the physical components, interactions, and features of a heterogeneous 

                                                 
29 While I believe there are both causal and noncausal explanations in science, the emphasis on counterfactual 

information is compatible with many of the exclusively casual accounts of explanation on offer. 
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class of (real, possible and model) systems (see Batterman and Rice [2014] and Rice 

[forthcoming] for additional details).  

In this way, universality enables us to see how idealized models can be used to explain 

even when they are holistically distorted representations of their target system(s). Indeed, 

discovering stable universal behaviors allows scientific modelers to move away from attempting 

to accurately represent some isolable set of difference-making parts of real-world systems and 

instead focus on discovering highly idealized models within the same universality class that will 

enable them to apply the mathematical and theoretical techniques necessary to discover the 

counterfactual dependence information required to explain and understand various phenomena.  

 One of the key projects of philosophy of science should be to understand how scientists’ 

use of highly idealized models has been so successful in terms of generating explanations and 

understanding of our world. I have argued that there are at least two links between idealized 

models and their target systems that can be used to justify scientists’ use of idealized models to 

explain and understand real-world phenomena: (1) accurate representation of difference makers, 

or (2) being within the same universality class. 
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Figure 1: The different links that can hold between idealized models and their target systems that allow scientists to 

use the idealized model to explain and understand real-world phenomena. 

While appealing to universality is a promising approach to justifying the use of holistically 

distorted models, I want to emphasize that I think one of the key lessons of the above discussion 

is that philosophers need to be more pluralistic about the kinds of relationships that can hold 

between idealized models and real-world systems that are sufficient for explanation and 

understanding. Some idealized models will accurately represent difference-makers of their target 

system(s), others will be in the same universality class as their target system(s), and others will 

perhaps exploit some alternative connection to their target system(s) (see Figure 1 above).  

Indeed, given the diverse array of modeling techniques and goals across various disciplines we 

should expect there to be an equally diverse set of ways that models can relate to real-world 

systems and provide the explanations and understanding of interest to scientific modelers. 
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 In sum, the four main claims of my holistic distortion view of idealized models are the 

following: 

(1) Many (if not most) idealized models in science ought to be characterized as holistically 

distorted representations of their target system(s). 

(2) Idealizing assumptions that result in holistically distorted representations typically make 

essential contributions by allowing for the application of various (mathematical) 

modeling techniques.  

(3) The use of such holistically distorted models ought to be justified by their ability to 

provide epistemic access to explanations and understanding that would otherwise be 

inaccessible.30 

(4) Given the diversity of modeling techniques and goals found in scientific practice, we 

require a more pluralistic approach to investigating the relationships between models and 

their target systems that justify their use in developing explanations and understanding. 

The task going forward is to provide the justification called for in (3) and (4) by looking at 

particular examples and enumerating the ways that holistically distorted models provide access 

to explanations and understanding that would otherwise be inaccessible. I have proposed one 

additional way this can be done: by appealing to the fact that the holistically distorted model is 

within the same universality class as its target system(s). I have provided an outline of that 

approach here, but, like any new account, some of the details of this approach will have to be 

worked out in other papers. However, these four claims do provide the foundation for a 

                                                 
30 Holistically distorted models can also allow for predictions that would otherwise be inaccessible, but that kind of 

contribution is beyond the scope of this paper. 
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fundamentally different way of thinking about idealized modeling in science that avoids the 

mistakes of the decompositional strategy. 

5. Conclusion 

The decompositional strategy is pervasive across a wide range of debates in the philosophy of 

science. I have argued that the assumptions underlying these decompositional approaches will 

fail to hold for a wide range of cases of scientific modeling. In response, I have proposed the 

holistic distortion view, which offers an alternative approach to characterizing and justifying the 

use of idealized models. Going forward, I suggest that philosophers of science take up the 

challenge of showing how scientific modelers are justified in using idealized models that 

holistically distort their target systems by analyzing the ways in which various modeling 

techniques can produce explanations and understanding that would otherwise be inaccessible. In 

other words, philosophers of science need to investigate the ubiquitous and unique contributions 

that various holistically distorted scientific representations make to scientific inquiry rather than 

continuing their attempts to ignore, remove, isolate, or quarantine the roles idealizations play 

within scientific theorizing. 
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