Document Type
Article
Version
Publisher's PDF
Publication Title
Journal of Chemical Physics
Volume
95
Publication Date
7-15-1991
Abstract
We have investigated the dynamics of the ethyl groups and their constituent methyl groups in polycrystalline ethylbenzene (EB), 1,2-diethylbenzene (1,2-DEB), 1,3-DEB, and 1,4-DEB using the solid state proton spin relaxation (SSPSR) technique. The temperature and Larmor frequency dependence of the Zeeman spin-lattice relaxation rate is reported and interpreted in terms of the molecular dynamics. We determine that only the methyl groups are reorienting on the nuclear magnetic resonance time scale. The observed barrier of about 12 kJ/mol for methyl group reorientation in the solid samples of EB, 1,2-DEB, and 1,3-DEB is consistent with that of the isolated molecule, implying that in the solid state, intermolecular electrostatic interactions play a minor role in determining the barrier. The lower barrier of 9.3 +/- 0.2 kJ/mol for the more symmetric 1,4-DEB suggests that the crystal structure is such that the minimum in the anisotropic part of the intramolecular potential is raised by the intermolecular interactions leading to a 3 kJ/mol decrease in the total barrier. We are able to conclude that the methyl group is well away from the plane of the benzene ring (most likely orthogonal to it) in all four molecules, and that in 1,2-DEB, the two ethyl groups are in the anticonfiguration. Our SSPSR results are compared with the results obtained by microwave spectroscopy and supersonic molecular jet laser spectroscopy, both of which determine molecular geometry better than SSPSR, but neither of which can determine ground electronic state barriers for these molecules.
Publisher's Statement
Copyright (1991) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. The following article appeared in J. Chem. Phys. 95, 828 (1991) and may be found at http://jcp.aip.org/resource/1/jcpsa6/v95/i2/p828_s1.
Citation
Peter A. Beckmann, Laura Happersett, Antonia V. Herzog and William M. Tong, J. Chem. Phys. 95, 828 (1991).
DOI
10.1063/1.461090