Document Type
Article
Publication Title
ACM SIGPLAN Notices - ICFP '13
Version
Author's Final Manuscript
Volume
48
Publication Date
9-2013
Abstract
System FC, the core language of the Glasgow Haskell Compiler, is an explicitly-typed variant of System F with first-class type equality proofs called coercions. This extensible proof system forms the foundation for type system extensions such as type families (type- level functions) and Generalized Algebraic Datatypes (GADTs). Such features, in conjunction with kind polymorphism and datatype promotion, support expressive compile-time reasoning.
However, the core language lacks explicit kind equality proofs. As a result, type-level computation does not have access to kind- level functions or promoted GADTs, the type-level analogues to expression-level features that have been so useful. In this paper, we eliminate such discrepancies by introducing kind equalities to System FC. Our approach is based on dependent type systems with heterogeneous equality and the “Type-in-Type” axiom, yet it preserves the metatheoretic properties of FC. In particular, type checking is simple, decidable and syntax directed. We prove the preservation and progress theorems for the extended language.
Publisher's Statement
© ACM, 2013. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM SIGPLAN Notices - ICFP '13 Volume 48, Issue 9 (September 2013) http://doi.acm.org/10.1145/2544174.2500599
DOI
http://doi.acm.org/10.1145/2544174.2500599
Citation
Stephanie Weirich, Justin Hsu, and Richard A Eisenberg, "System FC with explicit kind equality," ACM SIGPLAN Notices - ICFP '13 48.9 (September 2013): 275-286.