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Abstract 
We report solid state 1H nuclear magnetic resonance spin-lattice relaxation experiments and X-ray 

diffractometry in 2-t-butyldimethylsilyloxy-6-bromonaphthalene.  This compound offers an 

opportunity to simultaneously investigate, and differentiate between, the rotations of a t-butyl 

group [C(CH3)3] and its three constituent methyl groups (CH3) and, simultaneously, a pair of 'lone' 

methyl groups (attached to the Si atom).  The solid state 1H relaxation experiments determine 

activation energies for these rotations.  We review the models for the dynamics of both 'lone' 

methyl groups (ones whose rotation axes do not move on the NMR time scale) and models for the 

dynamics of the t-butyl group and its constituent methyl groups (whose rotation axes reorient on 

the NMR time scale as the t-butyl group rotates).   

 

1  Introduction    
Solid state nuclear magnetic resonance (NMR) relaxation experiments1 can be used to develop 

robust models for the dynamics of intramolecular groups like t-butyl groups [C(CH3)3] and their 

constituent methyl groups (CH3)2 or, just methyl groups bonded to a rigid backbone.3  These 

relaxation experiments measure the NMR frequency Fourier component of changing magnetic 

fields1 and this information can be related to motion occurring on the NMR time scale (10-10 to 10-

5 s for the experiments reported here).  This technique is not very good unless one knows a priori 

that there are very few motions on the NMR time scale, and even then, models must be employed.  
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Fortunately, molecular vibrations and librations (bond lengths, angles, lattice vibrations, etc.) 

occur on a much faster time scale (typically 10-15-10-14 s).  These methyl group and t-butyl group 

rotations are characterized by barriers in the 5-30 kJ mol-1 (1-7 kcal mol-1) range and very few 

experimental techniques can study dynamical processes at these low energies.  The compound 

studied here is 2-t-butyldimethylsilyloxy-6-bromonaphthalene (Fig. 1).  We report both the crystal 

structure from an X-ray diffraction experiment and the temperature dependence of the various 

parameters that characterize the somewhat complicated nonexponential solid state NMR 1H spin-

lattice relaxation in a polycrystalline sample.  The asymmetric unit4 in the crystal is a single 

molecule so that makes for a clean assignment of rotational barriers since all molecules are 

equivalent.  The molecule chosen for this study is representative of a large class of compounds that 

have a variety of rotors with quite different dynamics and as such is a test of the models for methyl 

and t-butyl group rotation.2, 3, 5, 6  The novelty of this work is that different sets of neighbouring 

methyl groups (those attached to the Si atom and those in the t-butyl group) in a relatively 

complicated molecule in a solid sample have been identified and characterized by their dynamical 

properties.  Readers not interested in the details of the X-ray and solid state NMR relaxation 

experiments are invited to go directly to the Conclusions. 

 

2  Experiments 
2.1  Single crystal X-ray diffraction 

The sample of 2-t-butyldimethylsilyloxy-6-bromonaphthalene was purchased from Sigma Aldrich 

and used as is.  The quoted purity was 97%.  A single crystal, taken from the same sample used to 

perform the NMR relaxation experiments, was mounted on a Hampton CryoLoop with Paratone-N 

and data collected with a Bruker D8 diffractometer using an Ultra rotating-anode generator (Mo) 

equipped with a high-efficiency multi-layer, double-bounce monochromator.  Experimental details 

are collected in Table 1.  All data were collected with 1.0 sec/1.0O correlated scans.  Structure 

solution and subsequent refinement used various components of the SHELXTL software package 

distributed by the Bruker Corporation (G. Sheldrick, Bruker-AXS, Madison, Wisconsin, USA).  

The geometry of the molecule in the crystal is shown in Fig. 1 and the crystal structure (the 100 

and 101 planes) is shown in Fig. 2. 
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2.2  Powder X-ray diffraction 

A powder X-ray diffractogram was taken with the same sample used for the NMR spin-lattice 

relaxation experiments.  The sample was ground to a thick paste in mineral oil and spread evenly 

on a fine Nylon loop.  Data were recorded using a Cu rotating-anode source and a Vantac 500 

detector at 100K.   As indicated in Fig. 3, the powder diffractogram and the simulated powder 

diffractogram calculated from the single-crystal data, compare very closely, indicating that the 

bulk sample does not contain any significant impurities. 

  

2.3  NMR spin-lattice relaxation 

The solid state NMR 1H spin-lattice relaxation experiments were performed with a 

polycrystalline sample between 88 and 312 K at NMR frequencies of ω/2π = 53.0, 22.5, and 8.50 

MHz (in applied magnetic fields of 1.24, 0.528, and 0.200 T).  The NMR frequencies being used 

in these relaxation experiments are very low compared with conventional high resolution NMR 

spectroscopy experiments.  This is needed in order to bring the frequencies of the intramolecular 

motions being studied into resonance with the NMR frequencies in a temperature range below the 

melting points of the solids like that being studied here.  Signal-to-noise at the lowest NMR 

frequency (8.50 MHz) was insufficient to make measurements below approximately 110 K mainly 

because the narrowing free induction decay, characterized by a spin-spin relaxation time of 

approximately 5 µs, became lost in the amplifier recovery time in the pulsed NMR experiment.  

The approximate spin-spin relaxation time of 5 µs corresponds to a line width of approximately 

200 kHz or 23,000 ppm (at 8.50 MHz).  A (perturbation π pulse)-t-(observe π/2 pulse) sequence 

was used and the return of the perturbed magnetization to its equilibrium value M(∞) was 

monitored.  The time dependence of the 1H magnetization M(t) was always fitted to a single 

exponential M(t) = M(∞)[1−(1−cosθ){exp(−Rt)}] and to a stretched exponential M(t) = 

M(∞)[1−(1−cosθ){exp(-R*t)β}]7-16  A minireview of the use of the stretched exponential function 

in the physical sciences is provided elsewhere.9  R is the unique spin-lattice relaxation rate (inverse 

of the spin-lattice relaxation time T1), R* is the characteristic relaxation rate, β is the stretching 

parameter, and θ is a parameter that accounts for the imperfections in the perturbing π pulse.   

 When β  > 0.95, R for a single exponential and R* for a stretched exponential are within a 

few percent of each other and the relaxation is deemed "exponential."  The temperature 
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dependence of β is shown in Fig. 4 where β = 0.95 is indicated by the dashed horizontal line.  Note 

that there is considerable scatter in these data and that β is essentially independent of NMR 

frequency.  The uncertainties are large at high temperature and smaller at low temperature.  

Indeed, the large uncertainties at high temperature plus the fact that β  > 0.95 essentially tell us that 

the relaxation can be taken to be exponential and a stretched exponential fit is really not necessary.  

But this must be determined.  At the same time, β ≈ 0.87 at low temperatures and the relaxation 

cannot be taken to be exponential.  That is, the relaxation was deemed nonexponential for 

temperatures below approximately 140, 130, and 110 K at 53.0, 22.5, and 8.50 MHz (Fig. 4).   It 

was deemed exponential above these temperatures (i.e., β  > 0.95).  When the relaxation was 

nonexponential, the initial (short time) slope of the perturbed magnetization was determined (as 

outlined elsewhere9) and this parameter, discussed further in the Results section, is called RS.   

 The temperature dependence of the relaxation rates R, RS, and R* is shown in Fig. 5.  Here, 

the same symbols are used for R and RS (which are fitted to the same model in the Results section) 

and different symbols are used for R* (which are not amenable to theoretical interpretation).  The 

transition from exponential to nonexponential relaxation can be seen at the same temperatures in 

Figs. 4 and 5.  The uncertainties indicated for R and R* are larger than the values returned by 

standard nonlinear fitting routines.  More meaningful uncertainties were determined in a separate 

numerical exercise by adding random noise to noiseless relaxation decays (to mimic the real 

experiments) and performing a statistical study (using approximately 2000 simulations in each 

case) of the resulting rates.  As a result, the uncertainties on R and R* at 22.5 and 53.0 MHz are 

taken to be ±7%, the uncertainties on R and R* at 8.50 MHz are taken to be ±10%, and the 

uncertainties on RS at all three frequencies are taken to be ±20%.  The size of the solid symbols for 

R (high temperatures) and R* (low temperatures) at 53.0 and 22.5 MHz in Fig. 5 are chosen to 

reflect, approximately, the uncertainties while the uncertainties for R at 8.50 MHz and for RS at all 

three frequencies are visible in Fig. 5.   

 Temperature was controlled with a cold nitrogen gas flow system and temperatures were 

measured with home-made, silver-soldered, copper-constantan thermocouples that are carefully 

calibrated with four secondary temperature standards every few years.  The polycrystalline sample 

of 2-t-butyldimethylsilyloxy-6-bromonaphthalene was in a 6 mm ID tube that contained 20 mm of 

sample.  The NMR coil was 15 mm in length meaning that 5 mm of sample was outside the coil.  

The thermocouple was imbedded in this additional 5 mm of sample.  Two samples were used with 
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several thermocouples at two completely independent experimental stations to make sure there 

were no systematic effects related to apparatus, temperature control, or slightly different 

measurement procedures. 

 

3  Results 
The 1H spin-lattice relaxation results from the modulation of the 1H-1H spin-spin interactions by 

methyl group and t-butyl group rotation.  All other motions take place on time scales too far 

removed from the NMR time scale (characterized by being within approximately two orders of 

magnitude of the inverse NMR frequencies) to be effective at relaxing the 1H spin system.  The 

spin-lattice relaxation for an ensemble of randomly oriented and isolated methyl (CH3) groups 

(which involves the modulation of only intraCH3 1H-1H interactions) is inherently nonexponential 

because of the anisotropic nature of the rotation (the spin-spin vectors orient in a plane) and 

because the motion of the three spin-spin vectors are perfectly correlated.17, 18  CH3-nonCH3 1H-1H 

interactions and interCH3 1H-1H interactions tend to make the relaxation more exponential.19, 20  

When the CH3 rotation axis is moving on the NMR time scale (as is the case for a t-butyl group), 

the relaxation, also, tends to be more exponential.21, 22  Indeed, these observations are to be found 

in the two main messages from the somewhat messy looking Fig. 4.  First, β, the parameter that 

characterizes the degree of nonexponential relaxation, is independent of NMR frequency (within 

experimental uncertainty) except in the transition region between the low and high temperature 

parts of Fig. 4.  Second, β  > 0.95 at high temperatures where the rotation of the t-butyl groups and 

their constituent methyl groups dominate and β = 0.87 ± 0.02 at low temperatures where the 

rotation of the methyl groups attached to the silicon atom dominate the relaxation.  This β ≈ 0.9 is 

the standard signature for a methyl group rotating faster than the inverse NMR frequency.8  Here, 

RS (the initial slope) and R* (in the stretched exponential) differ significantly (Fig. 5).  In all cases, 

it is the initial relaxation rate RS following a perturbation that is amenable to a theoretical model 

(next paragraph).  This is because, at short times following the perturbation, the effects of spin-

spin correlations and anisotropic motion have not yet "stretched" the relaxation.17, 18  If β  > 0.95, R 

≈ RS and the same model can be applied to R. 

 We consider the case of thermally assisted classical rotation since quantum mechanical 

tunneling need not be considered above approximately 80 K.23-30  Below approximately 80 K, 

tunneling occurs and a different model must be used.31  We first consider just the methyl groups 
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bonded to the Si atom.  The rotation axes of these methyl groups are not moving on the NMR time 

scale.  The initial relaxation rate RS of a perturbed 1H magnetization is9, 32-34  RS = (n/N)(Aintra + 

Ainter)[J(ω,τ) + 4J(2ω,τ)] = (n/N)(1+y)Aintra[J(ω,τ) + 4J(2ω,τ)] with J(ω,τ) = 2τ/(1 + ω2τ2), τ = 

τ0[exp(ENMR/kT)], and y = Ainter/Aintra.  The parameter n (= 6 for the two Si methyl group H atoms) 

is the number of 1H spins involved with the motion and N (= 21) is the number of 1H spins in the 

asymmetric unit which, in this case, is the whole molecule.  The ratio n/N can be thought of as a 

dilution factor.  The relaxation is "slowed down" by n/N as the n "relaxing 1H spins" relax the N – 

n "nonrelaxing 1H spins" following a perturbation.  This assumes that spin diffusion is effective.   

Aintra is a constant that characterizes the six 1H-1H spin-spin interactions among the three 1H spins 

in a CH3 group and can be calculated in terms of the H-H distances and other constants.34  The 

parameter Ainter characterizes the contribution to the relaxation of the CH3-nonCH3 1H-1H 

interactions and the interCH3 1H-1H interactions.  Ainter would be very difficult to calculate since it 

involves many 1H-1H interactions with varying H-H separations r and many different angular 

variations of the vectors     

€ 

 r  (as the methyl group rotates).  However, it is much smaller that Aintra.  It 

is convenient to use the dimensionless parameter y = Ainter/Aintra which characterizes the ratio of the 

CH3-nonCH3 1H-1H interactions and the interCH3 1H-1H interactions to the intraCH3 1H-1H 

interactions.  As such, Aintra + Ainter = Aintra(1+y).  The product Aintra(1+y) in reference 34 (where 

additional details are provided) is just called A and was taken as a fitting parameter in that earlier 

work.  Here, A is replaced by Aintra(1+y), Aintra is calculated, and y (typically between 0 and 0.2) is 

taken as the fitting parameter.  J(ω,τ) is the spectral density (the frequency spectrum of the local 

magnetic field resulting from methyl group rotation), τ can be taken as the mean time between 

methyl group hops,23-30, 32, 33 τ0 is the preexponential factor,23, 35, 36 and ENMR is the NMR activation 

energy.  The preexponential factor τ0 can be modeled, crudely, by assuming the methyl group 

librates as a harmonic oscillator at the bottom of the well.  In this case,37 τ0 is τHO = 

[2π/3][I/(2ENMR)]1/2, where I is the moment of inertia of a methyl group.    

 The adjustable parameters in the single fit to the temperature dependence of the relaxation 

rate RS at low temperature at both 53.0 and 22.5 MHz are ENMR, y, and τ0/τHO.  It is clear from the 

environments of the two Si methyl groups (Fig. 2) that the two groups are not strictly equivalent.  

As a result, these three adjustable parameters will likely be slightly different for the two groups.  

However, the precision of the fits (next paragraph) are not sufficiently sensitive to these small 

differences and we treat the two methyl groups as dynamically equivalent. 
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 Since only the high-temperature, fast-motion limit of the rotation of the two methyl groups 

attached to the Si atom is observed [ωτ  << 1 in J(ω,τ) = 2τ/(1 + ω2τ2) so J(ω,τ) = 2τ] at low 

temperatures in Fig. 5, RS = (n/N)(1+y)Aintra[10τ] = 10(n/N)(1+y)Aintraτ0[exp(ENMR/kT)] and only 

ENMR (obtained from the slope of lnRS versus T-1) and the product (1+y)Aintraτ0 (obtained from the 

intercept of lnRS versus T-1 ) can be determined.  The fit of the data gives ENMR = 5 ± 1 kJ mol-1.  

The two Si methyl groups might very well have different values of ENMR within this 20% 

uncertainty.  When Aintra is set to its calculated value then (1+y)τ0/τHO = 3.0 ± 1.5.  The value of y 

is typically between 0 and 0.2 so τ0/τHO is in the range 1-5.  Again, the two Si methyl groups will 

likely have slightly different values of these parameters.  The values of all these parameters 

indicate that we are observing methyl group rotation.  We note that the slow-motion limit (ωτ  >> 

1) for this motion would involve temperatures well below 80 K (the lowest temperature reported 

here) in which case quantum mechanical tunelling31 would play a role.  The above expressions for 

RS must then be modified but ENMR = 5 ± 1 kJ mol-1 would not be affected.  In addition to the RS 

values, values of R* from the stretched exponential are shown in Fig. 5 solely to indicate that RS is 

significantly larger than R*.  This difference correlates with the value of β = 0.87 ± 0.02 in Fig. 4. 

 A modified version of the above discussion can be applied to the (almost exponential) 1H 

spin-lattice relaxation resulting from the motion of the t-butyl group and its constituent methyl 

groups.  The details are somewhat complicated and are presented elsewhere.33, 38, 39   In the most 

general case there are four τ values (and, therefore, four activation energies ENMR); one for the t-

butyl group and one for each of the three methyl groups.  The expressions for R are tedious to 

generate but not conceptually difficult to understand: R = ∑iCi[J(ω,τi) + 4J(2ω,τi)].  In this case, 

the Ci absorb the ni/N, the Aintra and some of the Ainter.  They account for both the 3 X 6 = 18 

intraCH3 1H-1H interactions within the three CH3 groups and the 3 X 3 X 3 = 27 interCH3, intra-t-

butyl, 1H-1H interactions.  There are seven terms in the sum; one for the t-butyl group, one for each 

of the three methyl groups, and one each for the superimposed rotation of the t-butyl group and the 

three methyl groups.  There are a variety of possibilities for the relative values of the four τ values.  

The simplest model that fits the 1H spin-lattice relaxation rate data at high temperature reported 

here (which encompasses both the ωτ  << 1 and ωτ  >>  1 regimes) is one where the t-butyl group 

and one methyl group rotate with τb and the other two methyl groups rotate with τc.  By "simplest" 

fit we mean the fit having the smallest number of adjustable parameters.  (The choice of subscripts 
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'b' and 'c' is to be consistent with previous publications where the model is laid out in detail.38, 39)  

Thus τb = τ0b[exp(ENMRb/kT)] and τc = τ0c[exp(ENMRc/kT)].  There are terms in the expression of the 

relaxation rate in τb, τc, τbb (τbb
-1 = τb

-1 + τb
-1 = 2τb

-1), and τbc (τbc
-1 = τb

-1 + τc
-1) where τbb is the 

correlation time characterizing the superimposed motion of one methyl group and the t-butyl group 

and τbc is the correlation time characterizing the superimposed motion of the other two methyl 

groups and the t-butyl group.  The strengths Ci (which include the appropriate values of ni/N, Aintra 

and some of the Ainter) can all be related to Aintra as well as other numerical factors.33, 38, 39 

 The best fit of the high temperature R versus T data in Fig. 5 is found for all the constants 

Ci set to their calculated values.38, 39   The remaining fitted parameters are  ENMRb = 18.6 kJ mole-1, 

ENMRc  = 14.1 kJ mole-1, τ0b/τHOb = 0.2, and τ0c/τHOc = 2.  The uncertainties on each ENMR are 

approximately ±7% if the other three parameters are frozen at the above values but if all four of 

these parameters are allowed to vary the uncertainty is ±15%.  The uncertainties in the τ0/τHO 

values are approximately ± 50% (since they are multiplied by an exponential factor which, itself, 

contains a parameter with an uncertainty).  The success of this fit, particularly the fact that the Ci 

values take on their a priori computed values38, 39 means that the silyloxy group and its constituent 

silyl group are not moving on the NMR time scale.  Probably all three t-butyl methyl groups have 

slightly different NMR activation energies and if that were allowed in the fit of the data, the 

parameter space would be much larger and the assignments would not be unique.  So, we 

emphasize that the parameters assigned here represent the smallest parameter space that will fit the 

data. 

 Finally, we note that the temperature range where the low-temperature Si methyl group 

rotation and the high-temperature t-butyl+methyl group rotation are both contributing to the 

observed relaxation was not used in the fits for the two regions (98-130 K at 8.50 MHz, 110-140 K 

at 22.5 MHz, and 120-150 K at 53.0 MHz in Fig. 5).  That the sums of the two contributions fit the 

data in this intermediate temperature region is reassuring and also suggests that the motions can be 

treated independently.  To put this another way, at low temperatures the t-butyl group and its 

constituent methyl groups are rotating so slowly as to appear static (on the NMR time scale) and 

only the  rotation of the Si methyl groups is observed.  At the other extreme, at high temperatures, 

the Si methyl groups are rotating so fast (on the NMR time scale) as to not contribute to the 

relaxation and only t-butyl+constituent methyl group rotation is observed.    
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4  Conclusions 
In van der Waals organic solids, the atoms in the molecules are held together by strong covalent 

interactions and the molecules are held together in the solid by much weaker van der Waals 

interactions.40  The molecules generally keep their 'identity' in the solid state, even though there 

may be some conformational changes.  The feature of interest in the particular compound reported 

here (2-t-butyldimethylsilyloxy-6-bromonaphthalene) is that the silyloxy group provides two 

"lone" methyl groups bonded to a Si atom and three methyl groups in a t-butyl group (See Fig. 1).  

All of this is firmly "anchored" in the solid state by the silyloxy backbone attached to an aromatic 

ring system.  The fit of the solid state 1H spin-lattice relaxation rate data shows that the larger 

asymmetric silyloxy group and its constituent silyl group may rotationally librate slightly but these 

motions will involve small angular oscillations and will be at a much higher frequency than the 

NMR frequency.  As such, these motions do not contribute (directly) to the 1H spin-lattice 

relaxation process.  They add a very fast (and small angular) time dependence to the rotational 

axes for the various methyl and t-butyl groups in addition to the spatial randomization of these 

rotation axes as a consequence of the polycrystalline nature of the sample.  Indeed, we know, from 

previous experience that in the solid state, even for small asymmetric groups like methoxy, ethyl, 

and isopropyl groups, rotation is completely quenched.5, 41-43  This is not the case for a threefold 

symmetric t-butyl group which does reorient on the NMR time scale. 

 The most important parameter determined by the solid state NMR relaxation experiments is 

the NMR activation energy ENMR. (Other parameters are important but mainly to both allow us to 

say we are indeed looking at methyl and t-butyl group rotation and to allow us to distinguish 

between the methyl groups bonded to the Si atom and those in the t-butyl group.)   ENMR can be 

related to a barrier for methyl group rotation44-48  and it is generally between 0 and 20% smaller 

than the barrier.46, 47  As such, ENMR, which is measured to within ±10% or so, can be a stand in for 

the rotational barrier.  These barriers can be computed by electronic structure calculations in 

clusters of molecules (based on the X-ray structures) and the agreement between the computed 

barriers and the measured values of ENMR in systems similar to (but somewhat less complicated 

than) that studied here is very good.2, 3, 5, 6, 42-43  Electronic structure calculations in systems 

involving t-butyl groups are very complicated2 because of the superimposed methyl and t-butyl 

group rotation.  However, there are several additional possible motions in the silyloxy group in 2-t-

butyldimethylsilyloxy-6-bromonaphthalene so calculations in clusters of molecules of this 
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compound will be very challenging.  Silyloxy and silyl group small angle, high frequency 

librations will not affect the NMR solid state relaxation but they will likely slightly reduce the 

methyl and t-butyl group barriers from values computed assuming that the silyloxy and silyl 

groups are rigid. 

 We are interested in rotation on a time scale 'seen' by nuclear magnetic resonance (NMR) 
1H relaxation experiments.  In the solid state, the Si methyl groups in the system studied here 

rotate about their fixed axes (that is, fixed on the NMR time scale) with NMR activation energies 

of ENMR = 5 ± 1 kJ mol-1 (1.0 ± 0.2 kcal mol-1).  This is pretty much the lower limit on ENMR that 

can be studied by the solid state NMR relaxation technique; we only observe these methyl groups 

(> 80 K) on a time scale where methyl group rotation is faster than the inverse NMR frequency.  

These rotors are undoubtedly undergoing quantum mechanical tunelling31 at lower temperatures.   

The t-butyl group and its three component methyl groups are all rotating in a superimposed fashion 

on the NMR time scale and we see the entire dynamical regime; from rotating much more slowly 

than the inverse NMR frequency to rotating much faster than the inverse NMR frequency.  The 

simplest fit suggests that the t-butyl group and one of its methyl groups is rotating with an NMR 

activation energy of 19 kJ mole-1 (4.5 kcal mol-1) and the other two methyl groups are rotating with 

an NMR activation energy of 14 kJ mole-1 (3.3 kcal mol-1).  The NMR relaxation technique has its 

limitations and these NMR activation energies should be taken as a guide.  Opening up the 

parameter space for the fits would suggest that the t-butyl group has a barrier of 17-21 kJ mole-1 

(4.1-5.0 kcal mol-1), that one of its methyl groups has a barrier of 16-21 kJ mole-1 (3.8-5.0  kcal 

mol-1) and that the other two methyl groups have barriers in the 12-15 kJ mole-1 (2.9-3.6 kcal mol-

1) range.  The intramolecular and intermolecular interactions in this system are complicated and no 

doubt these barriers are all slightly different.  These barriers are similar to those found in similar 

compounds with t-butyl groups.2, 38, 39, 49-54 
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Table 1.   Crystallographic Data for 2-t-butyldimethylsilyloxy-6-bromonaphthalene  
 

Empirical Formula C16H21BrOSi 
CCDC deposit number 1420396 
Formula Weight 337.33 
Temp (K) 100 
Wavelength (Å) 0.71073 
Crystal System monoclinic 
Space Group P21 
a (Å) 7.0513(3) 
b (Å) 7.6501(2) 
c (Å) 15.5178(7) 
β(°) 101.3670(10) 
V (Å3) 820.66(6) 
Z 2 
Rflns (collect/indepnt) 4924/2742 
R1, wR2 (2σ(I)) 1.86, 4.24 
Flack parameter 0.017(6) 
GOF 0.874 
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     (a)          (b) 
 
Fig. 1. Two views of a molecule of 2-t-butyldimethylsilyloxy-6-bromonaphthalene in the crystal.  

The asymmetric unit is a single molecule so all molecules are equivalent.  The large black sphere 

is the Br atom, the medium-sized black sphere is the O atom, the two-tone sphere bonded to the O 

atom is the Si atom, the small black beach ball sphere bonded to the Si atom is the t-butyl group 

quaternary C atom (Ct), the small black spheres are the other silyloxy group and ring C atoms, the 

small hollow white spheres are ring H atoms, and the small grey spheres are the silyloxy group H 

atoms.  Methyl groups attached to the Si atom are labeled A and methyl groups in the t-butyl group 

are labeled B.  The projection in (a) is perpendicular to the plane of the aromatic rings and the 

projection in (b) has the Si-Ct bond perpendicular to the page.   
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     (a)          (b) 
 
Fig. 2. The crystal structure of 2-t-butyldimethylsilyloxy-6-bromonaphthalene in the (a) 100 and 

(b) 101 planes.  All molecules are equivalent and two projections of the molecule are shown in 

Figs. 1a and b.  The symbols that identify the various atoms are explained in the caption to Fig. 1.  

Methyl groups attached to the Si atom are labeled A and methyl groups in the t-butyl group are 

labeled B.   In (b), only one H atom on one of the methyl groups in the  t-butyl group is visible (far 

left below the B) and one of the methyl groups bonded to the Si atom is well hidden into the page. 
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Fig. 3.  A comparison of the single crystal and powder X-ray diffractograms.  The solid line shows 

the powder diffractogram and the dashed line (offset vertically upwards for clarity) shows the 

powder diffractogram computed from the single crystal X-ray data. 
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Fig.  4.  The stretching parameter β versus inverse temperature T-1 at 53.0 (), 22.5 (), and 8.50 

MHz ().  The solid horizontal line at β = 1 indicates exponential relaxation.  When β  > 0.95 

(dashed horizontal line) R (the unique rate in a single exponential) is indistinguishable from R* 

(the characteristic rate in a stretched exponential) within experimental uncertainty and the 

relaxation is deemed exponential.  The vertical lines (left for 53.0 MHz, center for 22.5 MHz, and 

right for 8.50 MHz) indicate the transitions from exponential relaxation at high temperatures 

characterized by R (Fig. 5) to nonexponential relaxation at low temperatures characterized by RS, 

R* (Fig. 5) and β.  The arrows from the molecule indicate the intramolecular groups responsible 

for relaxation in the two temperature regions. 
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Fig. 5.  The 1H spin-lattice relaxation rates R (, , ), RS (, , ), and R*(, , ) versus 

inverse temperature T-1 at 53.0 (, ), 22.5 (, ), and 8.50 MHz (, ).  The vertical lines (left 

for 53.0 MHz, center for 22.5 MHz, and right for 8.50 MHz) indicate the transitions from 

exponential relaxation at high temperatures characterized by R to nonexponential relaxation at low 

temperatures characterized by R* and RS.  The arrows from the molecule indicate the 

intramolecular groups responsible for relaxation in the two temperature regions. 
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