
Bryn Mawr College
Scholarship, Research, and Creative Work at Bryn Mawr
College
Computer Science Faculty Research and
Scholarship Computer Science

2004

The Governor Architecture: Avoiding Catastrophic
Forgetting in Robot Learning
Jeremy Strober

Lisa Meeden

Doug Blank
Bryn Mawr College, dblank@brynmawr.edu

Let us know how access to this document benefits you.

Follow this and additional works at: http://repository.brynmawr.edu/compsci_pubs

Part of the Computer Sciences Commons

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. http://repository.brynmawr.edu/compsci_pubs/30

For more information, please contact repository@brynmawr.edu.

Custom Citation
Stober, J., Meeden, L., Blank, D.S. (2004). The Governor Architecture: Avoiding Catastrophic Forgetting in Robot Learning.

http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
http://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F30&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/compsci_pubs/30
mailto:repository@brynmawr.edu

The Governor Architecture:

Avoiding Catastrophic Forgetting in Robot Learning

Jeremy Stober & Lisa Meeden Douglas Blank

Computer Science Computer Science

Swarthmore College Bryn Mawr College

Swarthmore, PA 19081 Bryn Mawr, PA 19010

Abstract

The governor architecture is a new method for
avoiding catatrophic forgetting in neural networks
that is particularly useful in online robot learn-
ing. The governor architecture uses a categorizer
to identify events and excise long sequences of
repetitive data that cause catastrophic forgetting
in neural networks trained on robot-based tasks.
We examine the performance of several variations
of the governor architecture on a number of re-
lated localization tasks using a simulated robot.
The results show that governed networks perform
far better than ungoverned networks. Governored
networks are able to reliably and robustly prevent
catastrophic forgetting in robot learning tasks.

1. Introduction

The back-propagation algorithm for training neural net-
works can theoretically approximate any function to
an arbitrary degree of precision. However, in prac-
tice, the successful application of back-propagation to
a particular problem requires careful planning to deter-
mine the appropriate network architecture, parameter
settings, and training process. In fact, the success of
back-propagation is highly dependent on the quality of
the training data (Tarassenko, 1998). It is crucial that
the training data be comprehensive, including all impor-
tant categories, as well as balanced, including a relatively
equal number of examples of each category interspersed
regularly throughout the data. An improper data set
can lead to catastrophic interference. That is, the net-
work can completely forget what was previously learned
as new patterns are trained.

There are two main methods for attempting to solve
the catastrophic forgetting problem: limit the amount of
overlap in hidden layer patterns, or continue to rehearse
prior input patterns (French, 1999). Our solution, called
a neural network governor, provides a method for deter-
mining which patterns represent key events that merit
rehearsal.

Historically, a governor is a mechanical feedback
device used to automatically control an engine. It
was probably first used to regulate windmills, but be-
came well-known in Watt’s steam engine (Denny, 2002).
Briefly, a mechanical governor is a pair of weights at-
tached to a spinning vertical axle of an engine. As the
axle spins faster, the weights rise up due to centrifugal
force causing a lever to limit the power to the axle, which
slows down the engine. As the engine slows down, the
weights drop, shifting the lever in the other direction,
which supplies more power causing the engine to speed
up again. This results in a self-regulating engine that
maintains a particular speed.

By analogy, we propose a similar device to automat-
ically regulate the flow of training patterns into a neu-
ral network being trained with the back-propagation al-
gorithm. Such a mechanism is necessary in applica-
tions of online learning, such as developmental robotics
(Blank et al., 2002), where the tasks and the environ-
ment may not be known in advance. Instead, the train-
ing process must be able to autonomously adapt the
training set to new situations as they arise.

2. Catastrophic Forgetting

Training a network online over an input sequence with
long subsequences of similar inputs results in poor
performance. Catastrophic forgetting provides an ex-
planation for this impediment to learning. Subtasks
comprised of long subsequences reallocate connection
weights, invalidating previously learned subtasks. Large
subsequences of similar inputs corresponding to single
subtasks will catastrophically interfere with previously
learned subtasks based on previous subsequences.

For example, McCloskey and Cohen conducted an ex-
periment where they trained a neural network on ones
addition facts and then twos addition facts. They found
that network performance on ones addition facts de-
creases dramatically very early in the training process on
twos addition facts (McCloskey and Cohen, 1989). This
work provided strong evidence against the widely held
opinion that neural network performance when trained

in successive tasks would degrade gracefully.
In off-line training, interference of this sort can be re-

duced or eliminated completely by interspersing the sub-
sequences. In the context of developmental robotics, an
autonomous solution to reordering the input sequence is
desirable.
As mentioned, several solutions have been developed

to mitigate catastrophic forgetting in neural networks.
Modification of the learning algorithm to promote lo-
calist representations in hidden layer activations have
proven effective. ALCOVE is perhaps the best example
of this kind of algorithm (Krushke, 1992).
Another approach to solving the catastrophic for-

getting problem is to continually rehearse previously
learned tasks. In the absence of data from previ-
ous tasks, pseudo-patterns are continually inserted into
new training data. Pseudo-patterns are generated
by presenting the network with random input. The
output produced along with the random input form
a pseudo-pattern (French et al., 2001, French, 1999,
Robins, 1998). Combining two networks and pseudo-
pattern rehearsal has proven successful at limiting catas-
trophic forgetting (French et al., 2001). The compli-
mentary memory centers in the neocortex and hip-
pocampus have provided the dual network solution with
a biologically probable basis (McClelland et al., 1995,
French et al., 2001).
The governor architecture falls under the general cate-

gory of solutions that utilize rehearsal to overcome catas-
trophic forgetting. Unlike the dual network models that
exploit properties of pseudo-patterns, the governor ar-
chitecture uses vector quantization to excise repetitive
data while identifying and saving important events from
the input data for continuous rehearsal.
We also believe that ALCOVE (and other models that

attempt to limit hidden layer overlap such as French’s ac-
tivation sharpening) can add substantially to solving the
problem of catastrophic forgetting. However, instead of
attempting to create ‘categories’ inside hidden layer rep-
resentations, we have moved the categorization process
outside of the network.

3. Governor Architecture

The governor architecture has three main components,
a categorizer, a buffer, and a neural network. The cat-
egorizer labels the input stream, consisting of both sen-
sor data and the desired output, according to a set of
codebook vectors. These labels are used to determine
events. Events are defined as changes in labeling. When
an event occurs, the current input is placed in a buffer.
The neural network trains on the input vectors stored in
the buffer.
The vectors that train the neural network are asyn-

chronous to the vectors of the original input stream.
When training is finished, the categorizer and buffer

components are removed and the neural network is run
synchronously on input data.
The categorizer serves as an event extractor. The con-

straints on the choice of this algorithm forced by the
robotics domain are: minimal training time, dynamic
category generation, and noise tolerance. Minimizing
training time is always an important requirement in any
machine learning task. Since robotics tasks vary and
often take place in rich environments, the number of
classes of events is not known in advance, so the cat-
egorization technique must allow for dynamic category
generation. Additionally, since robot sensors are inher-
ently noisy, any categorization method must be noise
tolerant to avoid treating small variations in sensor in-
puts as distinct events.
The categorization component of the governor archi-

tecture could be performed by a number of models, such
as the self-organizing map (Kohonen, 2001). In this re-
port we have chosen to explore the Resource Allocating
Vector Quantizer (described below) because it appears
to best meet the above criteria.

3.1 Resource Allocating Vector Quantizer

A formal description of the RAVQ algorithm
can be found in (Lin̊aker and Niklasson, 2000a).
An extension of the RAVQ, the Adaptive Re-
source Allocating Vector (ARAVQ), is described in
(Lin̊aker and Niklasson, 2000b).
Figure 1 shows the structure of the RAVQ algorithm.

For each time step t, a parameter, n, specifies how many
of the previous inputs to store in the FIFO buffer X(t).
In first stage of the RAVQ algorithm, these n inputs are
averaged to generate the moving average vector, x̄(t).
Averaging inputs in this way reduces noise. A buffer
that is too small will fail to reduce noise. A buffer that
is too large will decrease the sensitivity of the RAVQ
to event changes. The use of the buffer in the RAVQ
algorithm satisfies the noise tolerance criterion for event
extraction in robotics tasks.
For the second stage, the moving average vector is

compared to existing model vectors stored in the model
set M(t). If the moving average vector does not fall
within a specified distance δ, using the Euclidean metric,
of any existing model vector, then a new model vector
may be allocated, provided the moving average is a good
representation of the current input buffer within a spec-
ified threshold of ε. The ability to generate new model
vectors upon encountering novel situations satisfies the
dynamic codebook vector generation criterion.
In the third stage, the RAVQ maps the moving av-

erage vector to the closest existing model vector. By
examining the sequence of mappings produced by the
RAVQ algorithm, the governor architecture excises mul-
tiple similar input sequences from neural network train-
ing.

Figure 1: A diagram of the RAVQ architecture from (Lin̊aker, 2003, page 60). X(t) represents a FIFO buffer of n previous

input vectors that are averaged to generate x̄(t), the moving average vector. This moving average is then compared to the

current set of model vectors M(t). If no good match is found, a new model vector may be allocated.

Since the RAVQ is processing concatenated input and
target vectors, masking is employed to adjust the vec-
tors so that input and target components are equally
weighted.

Once the buffer X(t) is full, new model vector creation
and mapping proceed normally. So initialization of the
RAVQ algorithm only requires n steps. Since model vec-
tors are generated dynamically in time, effective event
extraction occurs very shortly after initialization, satis-
fying the minimal training time criterion.

3.2 RAVQ Governor

An event is defined as a change in mapping from one
model vector to another model vector. Each model vec-
tor represents a category. When an event occurs, the
current input to the RAVQ at the time of the event is
placed into another buffer, termed the training buffer.
The neural network trains on the buffer of vectors indi-
cated by the RAVQ as precipitating events. Since events
are rare, the buffer of event vectors is circular, allowing
the network to train over the buffer multiple times in the
absence of new events.

Three different versions of the vector-quantization-
based governor architecture are considered. The basic
architecture uses the RAVQ algorithm with a circular
training buffer size of 50. The RAVQ moving average
buffer size is 5, ε is 0.2, and δ is 0.8.

3.3 ARAVQ Governor

Amodification to the basic architecture employs the AR-
AVQ algorithm. The ARAVQ algorithm has an addi-
tional learning parameter, α, that determines the degree
to which existing model vectors can be tuned to better
reflect associated vectors in the input stream. This mod-
ification uses the same buffer size and parameters as the
RAVQ governor with the additional parameter α set to
0.02.

3.4 ARAVQ Balancing Governor

The second modification of the basic design discards the
fixed circular buffer size. Instead each model vector
maintains an individual FIFO buffer of the last s inputs
that mapped to that model vector. For the experiments
described below the size of the individual buffers is set
to 5. The other parameters are identical to those of the
ARAVQ governor.

At each time step the current input is placed in the
winning model vector’s history buffer, replacing the old-
est input in that buffer if the buffer is full, or filling a
vacant position in that buffer if the buffer is not full.
This scheme has the advantage of dynamically adjusting
buffer size to reflect the number of model vectors. Also,
the network trains across the buffers as if they were a
single flat array. Contiguous vectors in that array be-

long to neighboring model vectors, so all the histories
are interspersed, preventing blocks of identical data in
the training set.

In this buffering scheme, stored training data is not
necessarily connected to events. In the previous version
of buffering, new vectors placed into the training buffer
were associated directly with changes in the mapping
made by the RAVQ algorithm. The data collected in
this buffering scheme is more closely associated with the
individual model vectors and less with points of change
between model vectors.

3.5 Discrete and Random Governors

Two governor designs that did not use vector quantiza-
tion were also tested. The discrete governor samples at
a fixed rate t. Every t time steps this governor archi-
tecture samples from the input stream into a circular
buffer of size 50. The discrete governor is an approxima-
tion of a vector quantization based governor in that it
samples from the input stream at a rate much less than
real time. However, it is not sensitive to external changes
in the state of the environment. For regular repeating
environments simply sampling at a rate complimentary
to the frequency of events should yield similar results
as the governor architectures mentioned above. In more
dynamic environments that require robust methods, the
discrete governors’ lack of attention to the state of the
environment is a severe deficiency.

Like the discrete design, the random governor samples
independently of changes in the environment. Instead of
sampling at a fixed rate, the frequency of sampling is
stochastically determined. The wait time between sam-
ples is calculated using a matrix of probabilities.

Both the discrete sample rate and random sample rate
are determined using data collected from the sampling
rates recorded by the ARAVQ governor.

4. Experiments

The localization task explored here required the neu-
ral network to identify which of four rooms a simulated
robot occupied at each time step. A preset wall following
algorithm controlled the robot. The robot followed the
outer walls of the world (Figure 2) in a circular clockwise
pattern as indicated by the path markers, starting in the
lower left corner. The width of the simulated robot was
about half the width of the doorways. The robot was
slightly longer than it was wide.

The teacher function output a unique four bit basis
vector label for each room. For a small distance to either
side of a doorway, the teacher function linearly transi-
tioned from one label to the next label.

The neural network architecture was a standard three-
layer feed forward neural network. The input layer was
size 20. The network inputs included normalized sensor

Figure 2: Basic localization environment created in the Stage

simulator. The labels indicate the color of the walls and the

orthogonal bit vectors associated with each room. The hash

marks indicate the position and orientation of the robot at

various intervals along its path.

data from each of sixteen sonar sensors and a four bit
vector identifying the visible colors in the front field of
view. The hidden layer was size 10, and the output layer
was size 4. The neural network was trained to identify
the room based on the inputs using the standard back-
propagation algorithm with momentum. The learning
rate of the neural network was 0.2 and the momentum
was 0.9. The parameters for back-propagation remained
constant over all experiments.

Several different experiments were run to test various
aspects of the governor architectures described above.
Each of the governor architectures, including an un-
governed network, were run for at least eight trials on
each experimental variation. The number of trials de-
pended on the number of available computers at the time
of the experiment. For some experiments as many as six-
teen trials were completed.

Player/Stage provided the simulation platform for
these experiments (Gerkey et al., 2003). The robot defi-
nition simulated the capabilities of a ActivMedia Pioneer
2 with 16 sonar sensors and blob vision capability. The
Pyro environment was used to develop and execute the
controlling code for each experiment(Blank et al., 2003).

Figure 3: Event extraction. The X’s mark event detections

by a RAVQ during one complete cycle around the world.

The modified experimental world shows a similar pattern of

events.

4.1 Basic Localization

The goal of the initial localization experiment was to
show that governed neural networks could avoid catas-
trophic forgetting in the presence of substantial blocks
of repetitive training data where ungoverned neural net-
works would fail. For this experiment, the neural net-
works were trained for 5,000 time steps.

During training, the RAVQ governor generated an av-
erage of 35 model vectors with a range of 33 to 38 model
vectors. The ARAVQ governor and balancing governor
generated between 31 and 39 model vectors with an av-
erage of 34 model vectors. Figure 3 shows a typical case
of the distribution of events detected by a RAVQ during
one complete circuit around the world. The locations of
model vector changes are marked with X’s.

Figure 4 shows a typical histogram of sampling fre-
quency for the ARAVQ governor. The vertical bars rep-
resent the frequency over 5,000 training steps of each de-
lay between samples. The RAVQ based governor shows
similar results. Normalizing this histogram provided the
sampling delay probabilities for the random governor.
The average sampling frequency from this data served
as the fixed sampling rate for the discrete governor.

Following training, the networks were tested for 1,000
time steps against the teacher. The average error over
the testing period for each trial was calculated. These
average errors for each type of governed network were

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20 25

F
re

qu
en

cy

Distance Between Samples

ARAVQ Sampling Histogram

Figure 4: Summary of time step delays between event extrac-

tions. This is a typical sampling rate histogram for ARAVQ

governor. Each vertical bar represents the frequency over

5,000 training steps of each associated sampling delay. For

example, there were 180 times when events were extracted

after a delay of nine time steps. The RAVQ based governor

produced a similar histogram.

then used to calculate 98% confidence intervals.

A network that demonstrates catastrophic forgetting
will continuously output a single label. The robot will
pass through the room labeled by the network approx-
imately one quarter of the testing period. When that
occurs the network’s error will approach zero. The
other three quarters of the time the network’s error
will approach two. A network that has catastrophi-
cally forgotten should have an average error approaching
0.75×2 = 1.5. Since networks are only trained to within
a tolerance of 0.05 of the actual value, any average error
in the range 1.35 to 1.5 indicates complete failure. Values
approaching this range represent very poor performance.

Figure 5 describes the results of the initial experiment.
All the governor architectures learned the localization
task. The networks trained on the raw data without
governor support failed to learn the localization task.

The Figures 6 and 7 represent typical error plots for
networks during the testing period for the basic local-
ization task. The dashed bars represent points of tran-
sition between rooms. Due to the gradient nature of the
teacher and perceptual aliasing near room boundaries,
most error for trained networks occurs during these tran-
sitions.

Figure 6 shows the error plot for the ARAVQ balanc-
ing governor architecture. Note that most of the error
is occurring at room boundaries where it is difficult to
determine the robot’s location. All other governor ar-
chitectures including the discrete and random variations
showed similar performance.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

RAVQ
Governor

ARAVQ
Governor

Balancing
Governor

Discrete
Governor

Random
Governor

No
Governor

A
ve

ra
ge

 N
et

w
or

k
E

rr
or

 (
98

%
 c

on
fid

en
ce

)

Basic Localization Experimental Results

Figure 5: Summary of results for the basic localization exper-

iment. 98% confidence intervals for each network were gen-

erated based on average error during testing of each network

over multiple trials. All the governed networks performed

significantly better than the ungoverned network.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 200 400 600 800 1000

E
rr

or

Steps

Balancing ARAVQ Governor Error Plot

Figure 6: Testing error plot for network successful in basic

localization. Room boundaries are delimited by vertical lines.

Perceptual aliasing around room boundaries is the most likely

cause of the error peaks.

 0

 0.5

 1

 1.5

 2

 2.5

 0 200 400 600 800 1000

E
rr

or

Steps

Ungoverned Network Error Plot

Figure 7: Testing error plot for network unsuccessful in basic

localization. Regions of low error correspond to the third

room. Analysis of the training set shows that the ungoverned

network ended training on data from the third room.

Figure 7 shows the error plot for the ungoverned net-
work architecture. The sections of low error correspond
with the robot traveling through the third room. Anal-
ysis of the training set reveals that the last data that
the ungoverned network trained on was collected in the
third room. The ungoverned network clearly reproduces
only the aspect of the localization function learned at
the end of training.

4.2 Color Aliasing

In the second experiment, two of the rooms shared
a single color and could only be distinguished using
sonar data. This modified task required that the neural
networks make fine distinctions across different sensor
modalities. Color blob sensing alone cannot distinguish
two rooms of the same color. Only by fusing sensory
modalities will a network successfully learn to identify
each room. Since governed neural networks train on
sparse subsets of the available training data, verifying
that this sampling still allows networks to make fine dis-
tinctions during training is necessary.

Figure 8 shows the modified world with the robot path
indicated by the hashes. Except for the modified world,
the experimental setup was identical to the basic exper-
iment.

Figure 9 shows the results of the color aliasing exper-
iment. The various architectures all performed slightly
worse in this task than in the first experiment. The in-
creased likelihood of perceptual aliasing may account for
the small decrease in performance for the governed net-
works. The ungoverned network, as expected, failed to
learn this modified task as well.

Figure 8: The modified experimental world contains two

rooms whose walls are identical in color and are only dis-

tinguishable by the shape of the inner walls.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

RAVQ
Governor

ARAVQ
Governor

Balancing
Governor

Discrete
Governor

Random
Governor

No
Governor

A
ve

ra
ge

 N
et

w
or

k
E

rr
or

 (
98

%
 c

on
fid

en
ce

)

Color Aliasing Experimental Results

Figure 9: Summary of results for the color aliasing exper-

iment. 98% confidence intervals are shown. The ARAVQ

balancing governor performs statistically better than both

the discrete and random governors.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 200 400 600 800 1000

ARAVQ Governor Error Plot

Figure 10: Testing error plot for the ARAVQ governed net-

work. Error peaks tend to occur in the first room, which is

one of the two red rooms. This indicates some perceptual

aliasing between rooms with identical colored walls.

The ARAVQ balancing governor performs statistically
better than both the discrete and random governors.
However, all governed networks trained well enough to
perform localization.

Figure 10 shows the error plot for the ARAVQ gover-
nor architecture. Mislabelings occur when the robot is
in the first room, which is one of two red colored rooms.
Some variation in the location of perceptual aliasing is
evident across trails and governor architectures. How-
ever, most of the error occurs in the corner of the first
room. The right, slanted wall is the most distant at this
point in the room, making the room appear similar to
room four. The error plots for the ungoverned networks
are predictably similar to the basic experiment.

4.3 Simulated Stall

In the third experiment, a simulated stall was introduced
during training using the original world with four dis-
tinctly colored rooms. The various architectures trained
for 5,000 steps while the robot followed walls. The robot
then stopped and the architectures trained on data from
the motionless robot for another 5,000 steps.

The simulated stall tests the robust nature of each ar-
chitecture. The governor architectures employing vector
quantization are aware of the status of the environment.
In the absence of new events, these architectures will
only train the neural network on existing training data
already in the buffer.

Since the random and discrete governor architectures
are not aware of the environment and are not sensitive to
event changes, the training buffers of these architectures
will fill with repetitive information, causing degradation

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

RAVQ
Governor

ARAVQ
Governor

Balancing
Governor

Discrete
Governor

Random
Governor

No
Governor

A
ve

ra
ge

 N
et

w
or

k
E

rr
or

 (
98

%
 c

on
fid

en
ce

)

Simulated Stall Experimental Results

Figure 11: Summary of results for the simulated stall ex-

periment. 98% confidence intervals are shown. All governor

architectures employing vector quantization clearly perform

better than the discrete and random governor architectures.

in the quality of training.

Testing for the simulated stalling experiment lasted
1,000 steps. Figure 11 shows the results of simulated
stalling.

The discrete and random governor architectures,
nearly equivalent to the vector quantization based gov-
ernors in the two previous experiments, are significantly
worse at coping with stall situations. Some trials with
the discrete governor did show robust behavior despite
the long period of over training during the simulated
stall. This could be due to the relative position of the
stall in combination with variation on how well the net-
work learned prior to the stall.

The ability to cue training to events in the environ-
ment confers upon RAVQ and ARAVQ based governors
a distinct and robust advantage over both the discrete
and random counterparts. The network trained with the
discrete governor lost the ability to label all the rooms
correctly, showing systematic error towards a reduced la-
beling. During the stall, the ARAVQ governor did not
detect any new events, and so the network trained on
previously collected event data in the training buffer,
thus preventing degradation in performance.

4.4 Multiple Labels

For the final experiment, the networks had an addi-
tional binary input. When the binary input was set to
zero, each architecture was trained on the original label-
ing of the rooms. When the binary input was flipped,
each architecture was trained on a reordered labeling of
the rooms. The function being learned alternated every
5,000 training steps for a total training time of 20,000

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

RAVQ
Governor

ARAVQ
Governor

Balancing
Governor

Discrete
Governor

Random
Governor

No
Governor

A
ve

ra
ge

 N
et

w
or

k
E

rr
or

 (
98

%
 c

on
fid

en
ce

)

Multiple Labels Experimental Results

Figure 12: Summary of results for the multiple labels experi-

ments. 98% confidence intervals are shown. The ARAVQ bal-

ancing governor performs statistically and significantly better

than all other architectures.

steps.

This modification attempts to induce catastrophic for-
getting on multiple scales. The local sequential task of
labeling each room is combined with a global sequential
task of learning multiple labelings. Switching between
global functions occurs on a much longer time scale than
the local task of switching between rooms. Modifications
to the task at large time-scales will flush circular train-
ing buffers of information concerning the original task.
Only dynamic buffering, which preserves input data for
all model vectors, will train on all the local and global
tasks throughout the entire training period.

The networks trained on two separate room labeling
arrangements were tested for 1,000 steps on the first la-
beling and 1,000 steps on the second labeling. The aver-
age network errors over the entire testing period of 2,000
steps were then used to generate the confidence intervals
shown in Figure 12.

The ARAVQ balancing governor outperforms all other
governor architectures. The circular buffer method fails
to retain information over long time scales. By changing
the labeling every 5,000 steps, circular training buffers
are cleared of data from the previous labeling. This al-
lows the network to forget the previous labeling. The
balancing governor, with its dynamic buffer, performs
much better. The network trains on both labelings
throughout the entire training period. Figures 13 and
14 show typical error plots over the 2,000 step testing
period for the circular buffer based ARAVQ governor
and the ARAVQ balancing governor respectively.

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500 2000

ARAVQ Governor Error Plot

Figure 13: The network only learns the second labeling. This

indicates that the circular buffer did not retain data concern-

ing the first labeling during training on the second labeling.

 0

 0.5

 1

 1.5

 2

 2.5

 0 500 1000 1500 2000

Balancing ARAVQ Governor Error Plot

Figure 14: With dynamic buffering the network learns both

labelings. The network trains on data from both labelings

throughout the training period.

5. Conclusions

The governor assisted neural networks performed sig-
nificantly better than the ungoverned neural networks.
Training based on event abstraction eliminated the se-
quences of repetitive inputs which caused the occurrence
of catastrophic forgetting in the ungoverned networks.
Autonomously balancing the data using vector quanti-
zation techniques may be applicable more generally as
well, eliminating the tedious process of building a bal-
anced data set in many problem domains where neural
networks are used.

The color aliasing task demonstrated that certain fea-
tures in the environment could be vitally important to
producing the correct output and yet fail to be isolated
and recognized by the RAVQ or ARAVQ algorithms as
deserving of event status. The RAVQ and ARAVQ al-
gorithms sample sparsely, making fine correlations, re-
quired to learn the color aliasing location task, difficult
to amplify in the training set. These subtle correlations
may have an impact on a network’s sensor fusion ability.
Careful attention to the vector quantization parameters
may help alleviate some of these difficulties.

The superior performance of the ARAVQ balancing
governor in the multiple labeling task is certainly a result
of the robust dynamic buffer. The training buffer of the
ARAVQ balancing governor contains vectors associated
with all model vectors, and so the network continually
trains on both functions, whereas a fixed training buffer
would eventually lose all vectors associated with the first
function once the architecture began training on the sec-
ond. This would produce exactly the results described
above.

The ability to train feed-forward networks effectively
with governed back-propagation in robot control prob-
lems allows for developmental implementations that oth-
erwise would have had to rely on different learning algo-
rithms. The autonomous nature of event extraction us-
ing the RAVQ and ARAVQ algorithms may play other
keys roles in developmental systems.

6. Future Work

The governor architecture can be improved upon in
many ways. In the ARAVQ balancing governor, the his-
tory buffers for previously learned tasks do not change
and continued training on these inputs may lead to a
reduction in generalization. Populating ‘stale’ model
vector buffers with pseudo-patterns (Robins, 1998) may
maintain network generalization during rehearsal of old
tasks.

Besides improving the effectiveness of the governor
architecture, new methods should be developed to pre-
vent catastrophic forgetting over a larger set of network
topologies. The governor architecture does not sup-
port recurrence. Excising long sequences of repetitive

data distorts the temporal context of event changes. Se-
quences of event changes can be predicted but durations
of events are removed from consideration by the meth-
ods considered. Predicting sequences of event changes
requires vector quantization as a permanent feature of
the architecture and not merely a training device.
Using event extraction as a permanent part of the ar-

chitecture may lead to an expanded hierarchical devel-
opmental system.

7. Acknowledgements

We would like to thank Matt Fieldler who assisted in
the original development of the RAVQ based governor,
Evan Moses who continues to work on new applications
for governed neural network learning, and Andrew Stout
and Yee Lin Tan whose work in localization elucidated
the problem of catastrophic forgetting.

References

Blank, D., Meeden, L., and Kumar, D. (2002). Bringing
up robot: Fundamental mechanisms for creating a
self-motivating, self-organizing architecture. In Sim-
ulation of Adaptive Behavior.

Blank, D., Meeden, L., and Kumar, D. (2003). Python
robotics: An environment for exploring robotics be-
yond legos. In ACM Special Interest Group: Com-
puter Science Education Conference (SIGCSE).

Denny, M. (2002). Watt steam governor stability. In-
stitute of Physics Publishing European Journal of
Physics, 23:339–351.

French, R. (1999). Catastrophic forgetting in con-
nectionist networks. Trends in Cognitive Science,
3(4):128–135.

French, R., Ans, B., and Rousset, S. (2001). Pseudopat-
terns and dual-network memory models: advantages
and shortcomings. Connectionist Models of Learn-
ing, Development and Evolution, pages 13–22.

Gerkey, B., Vaughan, R., and Howard, A. (2003).
The Player/Stage project: Tools for multi-robot
and distributed sensor systems. In Proceedings
of the 11th International Conference on Advanced
Robotics, pages 317–323, Coimbra, Portugal.

Kohonen, T. (2001). Self-Organizing Maps. Springer,
third edition edition.

Krushke, J. (1992). ALCOVE: An exemplar-based
model of category learning. Psychological Review,
99:22–44.

Lin̊aker, F. (2003). Unsupervised on-line data reduction
for memorisation and learning in mobile robotics.
PhD thesis, University of Sheffield.

Lin̊aker, F. and Niklasson, L. (2000a). Sensory flow
segmentation using a resource allocating vector
quantizer. In Advances in Pattern Recognition:
Joint IAPR International Workshops SSPR2000
and SPR2000, pages 853–862. Springer.

Lin̊aker, F. and Niklasson, L. (2000b). Time series seg-
mentation using an adaptive resource allocating vec-
tor quantizing network based on change detection.
In Proceedings of the International Joint Conference
on Neural Networks, pages 323–328, Como, Italy.
IEEE Press.

McClelland, J., McNaughton, B., and O’Reilly, R.
(1995). Why there are complimentary learning
systems in the hippocampus and neocortex: in-
sights from the successes and failures of connection-
ist models of learning and memory. Psychological
Review, 102:419–457.

McCloskey, M. and Cohen, N. (1989). Catastrophic in-
terference in connectionist networks: the sequential
learning problem. The Psychology of Learning and
Motivation, 24:109–165.

Robins, A. (1998). Catastrophic for-
getting and pseudorehearsal in neu-
ral networks. Connectionists email list.
http://www.cs.otago.ac.nz/nnweb/pseudo.html.

Tarassenko, L. (1998). A Guide to Neural Computing
Applications. John Wiley & Sons Inc., New York,
New York.

	Bryn Mawr College
	Scholarship, Research, and Creative Work at Bryn Mawr College
	2004

	The Governor Architecture: Avoiding Catastrophic Forgetting in Robot Learning
	Jeremy Strober
	Lisa Meeden
	Doug Blank
	Custom Citation

	tmp.1489252446.pdf.jUSsJ

