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Fig. 12. Curvature plots for the surfaces generated from mesh model 2: (a) PN triangle; (b) PPS from the surface in (a); (c) Loop; and (d) PPS from the surface in (c).

Fig. 13. Curvature plots for the surfaces generated from mesh model 4: (a) PN triangle; (b) PPS from the surface in (a); (c) Loop; and (d) PPS from the surface in (c).
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surface being approximated, which are somewhat different from
each other. Secondly, they also show the smoothing effect of the
PPSs around the vertices and edges of the PN triangles surfaces
and around the so-called extraordinary vertices of the Loop’s
scheme (i.e., mesh vertices not incident to six edges). In general,
PN triangles surfaces are only C0-continuous around mesh
vertices and edges, while Loop subdivision surfaces are C2

everywhere, except around extraordinary vertices where they
are only C1.

6. Conclusions and ongoing work

In this article we have introduced a new manifold-based
construction for fitting a smooth surface to a triangle mesh of
arbitrary topology. Our construction combines in the same
framework most of the best features of previous constructions,
and thus it fills the gap left by other methods. In fact, the manifold
structure produced by our construction is more compact and
effective than the ones in [15,16,19], because it has only one
type of p-domain and transition function, the gluing domains are
larger, and the number of p-domains is smaller. Like the
construction in [17], ours produces C1-continuous surfaces and
is very flexible in ways of defining their geometry. However,
different from the construction in [17], ours generates surfaces
from triangle meshes, rather than quadrilateral meshes, and the
surfaces are contained in the convex hull of all control points used
to define their geometry. Finally, unlike the surfaces produced by
the triangle-based constructions in [18,24,19], the ones produced
by our construction are not given by purely (rational) polynomial
functions. However, our surfaces are free of singular points, and
thus they do not present the visual artifacts caused by the hole-
filling techniques used by [18,24] to deal with those points. Our
construction is also based on a solid theoretical framework, which
is an improvement upon the one in [15] and ensures the
construction correctness. In addition, we provided experimental
examples and concrete evidences of the effectiveness of our
construction.

We are currently working on the problem of adaptively fitting
C1 surfaces to dense triangle meshes. To this end, we are
developing a new solution that closely approximates meshes
with a very large number of vertices by a smooth PPS containing a
small number of charts. We also plan to extend this adaptive
fitting algorithm to generate a hierarchical manifold structure that
can represent surfaces in multiresolution. In addition, we intend
to further investigate the existence of (rational) polynomial
transition functions that can replace the ones currently used by
our construction (without requiring us to change the construction
gluing and p-domains).
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