
Bryn Mawr College Bryn Mawr College

Scholarship, Research, and Creative Work at Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College

Computer Science Faculty Research and
Scholarship Computer Science

2015

Injective Type Families for Haskell (extended version) Injective Type Families for Haskell (extended version)

Jan Stolarek

Simon Peyton Jones

Richard A. Eisenberg
Bryn Mawr College, rae@cs.brynmawr.edu

Follow this and additional works at: https://repository.brynmawr.edu/compsci_pubs

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Citation Citation
J. Stolarek, S. Peyton Jones, R. A. Eisenberg. Injective Type Families for Haskell (extended version).
Politechnika Łódzka Technical Report, 2015.

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College.
https://repository.brynmawr.edu/compsci_pubs/12

For more information, please contact repository@brynmawr.edu.

https://repository.brynmawr.edu/
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci
https://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
https://repository.brynmawr.edu/compsci_pubs/12
mailto:repository@brynmawr.edu

Politechnika Łódzka Technical Report

Injective Type Families for Haskell (extended version)1

Jan Stolarek
Politechnika Łódzka

jan.stolarek@p.lodz.pl

Simon Peyton Jones
Microsoft Research Cambridge

simonpj@microsoft.com

Richard A. Eisenberg
University of Pennsylvania

eir@cis.upenn.edu

Abstract
Haskell, as implemented by the Glasgow Haskell Compiler (GHC),
allows expressive type-level programming. The most popular type-
level programming extension is TypeFamilies , which allows users
to write functions on types. Yet, using type functions can cripple
type inference in certain situations. In particular, lack of injectivity
in type functions means that GHC can never infer an instantiation
of a type variable appearing only under type functions.

In this paper, we describe a small modification to GHC that
allows type functions to be annotated as injective. GHC naturally
must check validity of the injectivity annotations. The algorithm to
do so is surprisingly subtle. We prove soundness for a simplification
of our algorithm, and state and prove a completeness property,
though the algorithm is not fully complete.

As much of our reasoning surrounds functions defined by a sim-
ple pattern-matching structure, we believe our results extend be-
yond just Haskell. We have implemented our solution on a branch
of GHC and plan to make it available to regular users with the next
stable release of the compiler.

Categories and Subject Descriptors F.3.3 [Logics And Meanings
Of Programs]: Studies of Program Constructs – Type structure;
D.3.1 [Programming Languages]: Formal Definitions and Theory
– Semantics; D.3.2 [Programming Languages]: Language Classi-
fications – Haskell

Keywords Haskell; type-level programming; type families; func-
tional dependencies; injectivity

1. Introduction
The Glasgow Haskell Compiler (GHC) offers many language ex-
tensions that facilitate type-level programming. These extensions
include generalized algebraic data types (GADTs) (Cheney and
Hinze 2003; Peyton Jones et al. 2006), datatype promotion with
kind polymorphism (Yorgey et al. 2012), and functional dependen-
cies (Jones 2000). But the most widespread2 extension for type-
level programming is for type families, which allow users to define
type-level functions (Chakravarty et al. 2005a,b; Eisenberg et al.
2014) run by the type checker during compilation. Combined with
other features, they allow expressiveness comparable to that of lan-
guages with dependent types (Lindley and McBride 2013).

However, type families as implemented in GHC have a seri-
ous deficiency: they cannot be declared to be injective. Injectivity
is very important for type inference: without injectivity, some use-
ful functions become effectively unusable, or unbearably clumsy.
Functional dependencies, which have been part of GHC for many
years, are arguably less convenient (Section 7), but they certainly
can be used to express injectivity. That leaves programmers with an
awkward choice between the two features.

1 This is an extended version of the submitted work.
2 Appendix A gives data and describes our methodology for obtaining them.

In this paper we bridge the gap, by allowing programmers to
declare their type functions injective, while the compiler checks
that their claims are sound. Although this seems straightforward,
it turned out to be much more subtle than we expected. Our main
contribution is to identify and solve these subtleties. Although our
concrete focus is on Haskell, our findings apply to any language
that defines functions via pattern matching and allows to run them
during compilation. Specifically:

• We introduce a backwards-compatible extension to type fami-
lies, which allows users to annotate their type family declara-
tions with information about injectivity (Section 3).

• We give a series of examples that illustrate the subtleties of
checking injectivity (Section 4.1).

• We present a compositional algorithm for checking whether a
given type family (which may be open or closed) is injective
(Section 4.2), and prove it sound (Section 4.3). We show that a
compositional algorithm cannot be complete, but nevertheless
give a completeness proof for a sub-case where it holds (Sec-
tion 4.4).

• We explain how injectivity information can be exploited by
the type inference algorithm, including elaboration into GHC’s
statically typed intermediate language, System FC (Section 5).

• We describe how to make the injectivity framework work in the
presence of kind polymorphism (Section 6).

• We provide an implementation of our solution in a branch of
GHC. We expect it to become available to regular users with
the next stable release.

Our work is particularly closely related to functional dependencies,
as we discuss in Section 7, leaving other related work for Section 8.

An extended version of the paper is available online, with proofs
of the theorems (Stolarek et al. 2015).

2. Why injective type families are needed
We begin with a brief introduction to type families, followed by a
motivating example, inspired by a real bug report, that illustrates
why injectivity is important.

2.1 Type families in Haskell
Haskell (or, more precisely, GHC), supports two kinds of type fam-
ily: open and closed3. An open type family (Chakravarty et al.
2005a,b) is specified by a type family declaration that gives its
arity, its kind (optionally), and zero or more type instance decla-
rations that give its behaviour. For example:

3 Associated types (Chakravarty et al. 2005a) are essentially syntactic sugar
for open type families. Everything we say in this paper works equally
for associated types, both in theory and in the implementation. So we
do not mention associated types further, apart from a short discussion in
Section 3.3.

Stolarek, Peyton Jones, Eisenberg: Injective Type Families for Haskell 1 2015/5/22

σ, τ ::= α Type variable
| H Type constructor
| τ1 τ2 Application
| F τ Saturated type-function application

Figure 1. Syntax of types.

type family F a
type instance F Int = Bool
type instance F [a] = a → a

The type-instance equations may be scattered across different mod-
ules and are unordered; if they overlap they must be compatible.
We say that two overlapping type family equations are compatible
when any application matching both of these equations reduces, in
one step, to the same result with any of these equations.

A closed type family (Eisenberg et al. 2014) is declared with
all its equations in one place. The equations may overlap, and are
matched top-to-bottom. For example:

type family G a where
G Int = Bool
G a = Char

In both open and closed case the family is defined by zero4 or
more equations, each of form F τ = σ, where:

• Every left hand side has the same number of argument types τ ;
this number is the arity of the family.

• Every type variable mentioned on the right must be bound on
the left: ftv(τ) ⊇ ftv(σ).

• The types τ and σ must be monotypes; they contain no for-all
quantifiers.

• In addition, the types τ on the left hand side must be type-
function-free.

The left hand side (LHS) of the equation is F τ and the right hand
side (RHS) is σ.

For the purposes of Sections 3–5 we restrict our attention to
kind-monomorphic type functions. The generalization to polymor-
phic kinds is straightforward – see Section 6.

Type functions may only appear saturated in types. That is, if
F has arity 2, it must always appear applied to two arguments.
Figure 1 gives the syntax of (mono-)types.

2.2 The need for injectivity
A practical use case for injectivity arises in the vector library5.
That library defines an open type family, Mutable , that assigns a
mutable counterpart for every immutable vector type:

type family Mutable v

For example, if ByteString is an immutable vector of bytes, and
MByteString is the mutable variant, then we can express the
connection by writing:

type instance Mutable ByteString = MByteString

In the real library, the argument to Mutable is the type constructor
for a vector; but element polymorphism complicates the example

4 Empty closed type families are implemented in the development version
of GHC and will be available to regular users with the next stable release.
5 The problem described here was originally reported at https://github.
com/haskell/vector/issues/34. Our example here is slightly simpli-
fied.

and thereby obscures the main point, so we use a monomorphic
version here.

The library also provides two functions over vectors:

freeze :: Mutable v → IO v
convert :: (Vector v ,Vector w)⇒ v → w

freeze takes a mutable vector and turns it into an immutable one;
convert converts one kind of vector into another. But now suppose
the programmer writes this:

ftc :: (Vector v ,Vector w)⇒ Mutable v → IO w
ftc mv = do {v ← freeze mv ; return (convert v)}

Currently GHC complains that the type of ftc is ambiguous. Why?
Consider a call (ftc vec), where vec :: MByteString . What type
should instantiate v in the call? Since Mutable ByteString =
MByteString , picking v 7→ ByteString would certainly work.
But if Mutable were not injective, there could be other valid
choices for v , say v 7→ ByteStringX . But different choices
would give different behaviour, because the class instances for
Vector ByteString and Vector ByteStringX might behave quite
differently. Since there is no unique choice, GHC refrains from
choosing, and instead reports v as an ambiguous type variable.

To resolve the ambiguity of v we have to give guidance to the
type inference engine. A standard idiom in cases like these is to use
proxy arguments. We could rewrite ftc like this:

data Proxy a

ftc′ :: (Vector v ,Vector w)
⇒ Proxy v -- NB: extra argument here
→ Mutable v → IO w

ftc′ mv = do {v ← freeze v ; return (convert v)}
Instead of the problematic call (ftc vec) where vec::MByteString ,
the programmer must supply an explicit proxy argument, thus:

ftc′ (⊥ :: Proxy ByteString) vec

The value of the proxy argument is⊥; its only role is to tell the type
inference engine to instantiate the type variable v to ByteString .

This works, but it is absurdly clumsy, forcing the programmer to
supply redundant arguments whose value is (in the programmer’s
mind) unambiguously determined by the context.

Clearly, in the case of Mutable , the library designers intend the
type family to be injective: every immutable vector type has its
own unique mutable counterpart. The purpose of this paper is to
allow programmers to express that intent explicitly, by providing
an injectivity annotation, thus:

type family Mutable v = r | r → v

The user names the result of Mutable as r and, using syntax in-
spired by functional dependencies, declares that the result r deter-
mines the argument v . GHC then verifies that the injectivity anno-
tation provided by the user holds for every type family instance.
During type inference, GHC can exploit injectivity to resolve type
ambiguity. This solves the problem in vector library in one line –
no other changes are required.

3. Injective type families
Next we describe our proposed extension, from the programmer’s
point of view.

3.1 Injectivity of type families
In the rest of this paper we depend on the following definition of
injectivity for type families:

Definition 1 (Injectivity). A type family F is n-injective (i.e. injec-
tive in its n’th argument) iff ∀σ, τ : F σ ∼ F τ =⇒ σn ∼ τn

Stolarek, Peyton Jones, Eisenberg: Injective Type Families for Haskell 2 2015/5/22

https://github.com/haskell/vector/issues/34
https://github.com/haskell/vector/issues/34

Here σ ∼ τ means that we have a proof of equality of types σ and
τ . So the definition simply says that if we have a proof that F σ
is equal to F τ , then we have a proof that σn and τn are equal.
Moreover, if we know that F τ ∼ τ ′ we can discover injective
arguments τn by looking at the defining equations of F . Section 5
provides the details.

3.2 Annotating a type family with injectivity information
Injectivity is a subtle property and inferring it is not necessarily
possible or desirable (see Section 3.4), so we therefore ask the
user to declare it. The compiler should check that the declared
injectivity of a type family is sound.

What syntax should we use for such injectivity annotations? We
wanted to combine full backwards compatibility when injectivity
is not used, and future extensibility (Section 7 discusses the latter).
Definition 1 admits injectivity in only some of the arguments and
so we have to be able to declare that a function is injective in its
second argument (say) but not its first.

To achieve this, we simply allow the programmer to name the
result type and, using a notation borrowed from functional depen-
dencies (Jones 2000), say which arguments are determined by the
result. For example:

type family F a b c = r | r → a c

The “= r” part names the result type, while the “r → a c” –
termed the injectivity condition – says that the result r determines
arguments a and c, but not b. The result variable may be annotated
with a kind, of course, and the injectivity part is optional. So all of
the following are legal definitions:

type family F a b c
type family F a b c = r
type family F a b c = (r :: ?→ ?) | r → a
type family F a b c = r | r → a c

Examples above use open type families but the syntax also extends
to closed type families, where the injectivity annotation precedes
the where keyword.

3.3 Associated types
A minor syntactic collision occurs for associated types:

class C a b where
type F a b
type F a b = b

The second line beginning “type F a b” is taken as the default
instance for the associated type (to be used in instances of C
in which F is not explicitly defined). Note that the family and
instance keywords can be omitted for associated types and that
the default instance type F a b = b looks suspiciously like a type
family with a named result type. To avoid this ambiguity, you can
only name the result type with associated types if you also give an
injectivity annotation, thus:

class C a b where
type F a b = r | r → b
type F a b = b

As explained in Section 4, GHC must check instances of injective
type families to make sure they adhere to the injectivity criteria. For
associated type defaults, the checks are made only with concrete
instances (that is, when the default is actually used in a class
instance), not when processing the default declaration. This choice
of behaviour is strictly more permissive than checking defaults at
the class declaration site.

3.4 Why not infer injectivity?
One can wonder why we require explicit annotations rather then
inferring injectivity.

For open type families, inferring injectivity is generally impos-
sible, as the equations are spread across modules and can be added
at any time. Inferring injectivity based only on those equations
in the declaring module would lead to unexpected behaviour that
would arise when a programmer moves instances among modules.

Inferring injectivity on closed type families, however, is theo-
retically possible, but we feel it is the wrong design decision, as
it could lead to unexpected behaviour during code refactoring. An
injectivity declaration states that the injectivity property of a type
family is required for the program to compile. If injectivity were in-
ferred, the user might be unaware that she is relying on injectivity.
Say our programmer has an inferred-injective type family F . She
then adds a new equation to the definition of F that breaks the in-
jectivity property. She could easily be surprised that, suddenly, she
has compilation errors in distant modules, if those modules (per-
haps unwittingly) relied on the injectivity of F . Even worse, the
newly-erroneous modules might be in a completely different pack-
age. With the requirement of an explicit annotation, GHC reports an
error at the offending type family equation. To keep matters simple
we restrict ourselves to explicitly-declared injectivity.

4. Verifying injectivity annotations
Before the compiler can exploit injectivity (Section 5), it must first
check that the user’s declaration of injectivity is in fact justified. In
this section we give a sound, compositional algorithm for checking
injectivity, for both open and closed type functions.

We want our algorithm to be compositional or modular: that is,
we can verify injectivity of function F by examining only the equa-
tions for F , perhaps making use of the declared injectivity of other
functions. In contrast a non-compositional algorithm would require
a global analysis of all functions simultaneously; that is, a compo-
sitional algorithm is necessarily incomplete. A non-compositional
algorithm would be able to prove more functions injective (Sec-
tion 4.4), but at the expense of complexity and predictability. A
contribution of this paper to articulate a compositional algorithm,
and to explain exactly what limitations it causes.

Soundness means that if the algorithm declares a function injec-
tive, then it really is; this is essential (Section 4.3). Completeness
would mean that if the function really is injective, then the algo-
rithm will prove it so. Sadly, as we discuss in Section 4.4, com-
pleteness is incompatible with compositionality. Nevertheless we
can prove completeness for a sub-case.

4.1 Three awkward cases
Checking injectivity is more subtle than it might appear. Here are
three difficulties, presented in order of increasing obscurity.

Awkward Case 1: injectivity is not compositional First consider
this example:

type family F1 a = r | r → a
type instance F1 [a] = G a
type instance F1 (Maybe a) = H a

Is F1 injective, as claimed? Even if G and H are injective, there
is no guarantee that F1 is, at least not without inspecting the
definitions of G and H . For example, suppose we have:

type instance G Int = Bool
type instance H Bool = Bool

So both G and H are injective. But F1 is clearly not injective;
for example F1 [Int] ∼ G Int ∼ Bool ∼ H Bool ∼

Stolarek, Peyton Jones, Eisenberg: Injective Type Families for Haskell 3 2015/5/22

F1 (Maybe Bool). Thus, injectivity is not a compositional prop-
erty.

However, it is over-conservative to reject any type function with
type functions in its right-hand side. For example, suppose G and
H are injective, and consider F2 defined thus:

type family F2 a = r | r → a
type instance F2 [a] = [G a]
type instance F2 (Maybe a) = H a → Int

Since a list cannot possibly match a function arrow, an equality
(F2 σ ∼ F2 τ) can only hold by using the same equation twice;
and in both cases individually the RHS determines the LHS because
of the injectivity of G and H . But what about these cases?

type family F3 a = r | r → a
type instance F3 [a] = Maybe (G a)
type instance F3 (Maybe a) = Maybe (H a)

type family F4 a = r | r → a
type instance F4 [a] = (G a, a, a, a)
type instance F4 (Maybe a) = (H a, a, Int ,Bool)

F3 is not injective, for the same reason as F1 . But F4 is injective,
because, despite calls to two different type families appearing as
the first component of a tuple, the other parts of the RHSs ensure
that they cannot unify.

Awkward Case 2: the right hand side cannot be a bare variable
or type family The second awkward case is illustrated by this
example:

type family W1 a = r | r → a
type instance W1 [a] = a

To a mathematician this function certainly looks injective. But,
surprisingly, it does not satisfy Definition 1! Here is a counter-
example. Clearly we do have a proof of (W1 [W1 Int] ∼
W1 Int), simply by instantiating the type instance with [a 7→
W Int]. But if W1 was injective in the sense of Definition 1, we
could derive a proof of [W1 Int] ∼ Int , and that is plainly false!
Similarly:

type family W2 a = r | r → a
type instance W2 [a] = W2 a

Again W2 looks injective. But we can prove W2 [Int] ∼
W2 Int , simply by instantiating the type instance; then by Defini-
tion 1, we could then conclude [Int] ∼ Int , which is plainly false.
So neither W1 nor W2 are injective, according to our definition.
Note that the partiality of W1 and W2 is critical for the failure
case to occur.

Awkward Case 3: infinite types Our last tricky case is exempli-
fied by Z here:

type family Z a = r | r → a
type instance Z [a] = (a, a)
type instance Z (Maybe b) = (b, [b])

Quick: is Z injective? Are there any types s and t for which
Z [t] ∼ Z (Maybe s)? Well, by reducing both sides of this
equality that would require (t , t) ∼ (s, [s]). Is that possible? You
might think not – after all, the two types do not unify. But consider
G , below:

type family G a
type instance G a = [G a]

(Whether or not G is injective is irrelevant.) Now choose t =
s = G Int . We have Z [G Int] ∼ (G Int ,G Int) ∼

(G Int , [G Int]) ∼ Z (Maybe (G Int)). Now use Defi-
nition 1 on the first and last of this chain of equalities, to de-
duce [G Int] ∼ Maybe (G Int), which is unsound. Indeed
(t , t) ∼ (s, [s]) holds! And so Z is not injective, according to
Definition 1.

One reasonable way to fix this is to guarantee that all type-level
functions are terminating, so that we cannot generate an infinite
type like G Int . However, at the term level Haskell allows poten-
tially non-terminating functions because the burden of proving ter-
mination is too heavy. Instead, programmers routinely accept that if
they write an infinite loop the program will loop. The type level is
similar: the burden of proving termination is heavy, and program-
mers are willing to accept that the typechecker might loop if they
write a type-level loop. Indeed GHC’s language extension Unde-
cidableInstances lifts termination checking for type-class and type
family instances for this very reason.

The difference with injectivity is that the type checker might ter-
minate, but generate an unsound program, and that is unacceptable.
As long as GHC accepts potentially non-terminating type families,
the possibility of such a disaster is real, and we must guard against
it.

4.2 The injectivity check
Equipped with these intuitions, we can give the following injectivity-
check algorithm:

Definition 2 (Injectivity check). A type family F is n-injective iff

1. For every equation F σ = τ :
(a) τ is not a type family application, and
(b) if τ = a (for some type variable a), then σ = a (that is,

the list σ consists of just one element, a).
2. Every pair of equations F σi = τi and F σj = τj (including
i = j) is pairwise-n-injective.

Clause 2 compares equations pairwise. Here is the intuition,
which we will make precise in subsequent sections:

Definition 3 (Intuitive pairwise check). Two equations are pairwise-
n-injective if, when the RHSs are the same, then the n’th argument
on the left hand sides are also the same.

For open type families, we must perform this pairwise-injectivity
check to all pairs of type instance declarations in the program,
even though they may be scattered over many modules. This is
nothing new: the same holds of the check that equations are com-
patible.

Clause 1 deals with Awkward Case 2, by rejecting any type fam-
ily with an equation whose RHS is a bare type variable or function
call. This restriction is barely noticeable in practice, because any
equation rejected by Clause 1 would also be rejected by Clause 2, if
there was more than one equation. That leaves only single-equation
families, such as

type instance F a = G a

which might as well be done with a type synonym. The sole excep-
tion are equations of the form F a = a , a useful fallthrough case
for a closed type family. We allow this as a special case; hence 1b.

Notice that Condition 1 permits a RHS that is headed by a type
variable or function call; e.g. F (T a b) = a b or F [a] =
G a Int , where G has an arity of 1.

4.2.1 Unifying RHSs
In the intuitive injectivity check above, we check if two RHSs are
the same. However, type families are, of course, parameterized over
variables, so the “sameness” check must really mean unification.
For example:

Stolarek, Peyton Jones, Eisenberg: Injective Type Families for Haskell 4 2015/5/22

type family G1 a = r | r → a
type instance G1 [a] = [a]
type instance G1 (Maybe b) = [(b, b)]

It would be terribly wrong to conclude that G1 is injective, just
because a and (b, b) are not syntactically identical.

Unifying the RHSs will, upon success, yield a substitution. We
want to apply that substitution to the LHSs, to see if they become
syntactically identical. For example, consider:

type family G2 a b = r | r → a b
type instance G2 a Bool = (a, a)
type instance G2 Bool b = (b, Bool)

Unifying the RHSs yields a most-general substitution that sets both
a and b to Bool . Under this substitution, the LHSs are the same,
and thus G2 is injective.

We must be careful about variable names however. Consider
G3 :

type family G3 a b = r | r → b
type instance G3 a Int = (a, Int)
type instance G3 a Bool = (Bool , a)

This function is not injective: both G3 Bool Int and G3 Int Bool
reduce to (Bool , Int). But the RHSs, as stated, do not unify: the
unification algorithm will try to set a to both Bool and Int . The
solution is simple: freshen type variables, so that the sets of vari-
ables in the equations being compared are disjoint. In this example,
if we freshen the a in the second equation to b, we get a unifying
substitution [a 7→ Bool , b 7→ Int], and since the LHSs do not co-
incide under that substitution, we conclude that G3 is not injective.

Conveniently, freshening variables and unifying allows us to
cover one other corner case, exemplified in G4 :

type family G4 a b = r | r → a b
type instance G4 a b = [a]

The type family G4 is not injective in its second argument, and we
can see that by comparing the equation against itself ; that is, when
we say “every pair of equations” in Definition 3 we include the pair
of an equation with itself. When comparing G4 ’s single equation
with itself, variable freshening means that we effectively compare:

type instance G4 a1 b1 = [a1]
type instance G4 a2 b2 = [a2]

The unifying substitution can be [a1 7→ a2]. Applying this to the
LHSs still yields a conflict b1 6= b2 , and G4 is (rightly) discovered
to be non-injective. Summing this all together, we can refine our
intuitive pairwise check as follows:

Definition 4 (Unsound pairwise check). Two equations F σi = τi
and F σj = τj , whose variables are disjoint6, are pairwise-n-
injective iff either

1. Their RHSs τi and τj fail to unify, or
2. Their RHSs τi and τj unify with substitution θ, and θ(σi n) =
θ(σj n).

Alas, as we saw in Awkward Case 1 (Section 4.1), if the RHS of
a type instance can mention a type family, this test is unsound. We
explain and tackle that problem next.

4.2.2 Type families on the RHS
If the RHS of a type instance can mention a type family, classical
unification is not enough. Consider this example:

6 We can always make them disjoint by alpha-conversion.

U(a, τ) θ = U(θ(a), τ) θ a ∈ dom(θ) (1)
U(a, τ) θ = Just θ a ∈ ftv(θ(τ)) (2)
U(a, τ) θ = Just ([a 7→ θ(τ)] ◦ θ) a 6∈ ftv(θ(τ)) (3)
U(τ, a) θ = U(a, τ) θ (4)

U(σ1 σ2, τ1 τ2) θ = U(σ1, τ1) θ >>= U(σ2, τ2) (5)
U(H ,H) θ = Just θ (6)

U(F σ,F τ) θ = U(σi , τi) θ >>= F i-injective (7)
. . . >>= ...etc...
U(σj , τj) F j-injective

U(F σ, τ) θ = Just θ (8)
U(τ,F σ) θ = Just θ (9)
U(σ, τ) θ = Nothing (10)

Just θ >>= k = k θ
Nothing>>= k = Nothing

Figure 2. Pre-unification algorithm U .

type family G5 a = r | r → a
type instance G5 [a] = [G a]
type instance G5 Int = [Bool]

Here, G is some other type family, known to be injective. When
comparing these equations, the RHSs do not unify under the clas-
sical definition of unification (i.e. there is no unifying substitution).
Therefore, under Definition 4, G5 would be accepted as injective.
However, this is wrong: we might have G Int = Bool , in which
case G5 is plainly not injective.

To fix this problem, we need a variant of the unification algo-
rithm that treats a type family application as potentially unifiable
with any other type. Algorithm U(σ, τ) θ is defined in Figure 2. It
takes types σ and τ and a substitution θ, and returns one of two pos-
sible outcomes: Nothing, or Just φ, where φ extends θ. We say that
φ extends θ iff there is a (possibly empty) θ′ such that φ = θ′ ◦ θ.

The definition is similar to that of classical unification except:

• Equations (8) and (9) deal with the case of a type-function ap-
plication; it immediately succeeds without extending the sub-
stitution.

• Equation (7) allows U to recurse into the injective arguments of
a type-function application.

• Equation (2) would fail in classical unification (an “occurs
check”); U succeeds immediately, but without extending the
substitution. We discuss this case in Section 4.2.3.

We often abbreviate U(σ, τ) ∅ as just U(σ, τ), where ∅ is the
empty substitution.

Algorithm U has the following two properties:

• If U(σ, τ) = Nothing, then σ and τ are definitely not unifi-
able, regardless of any type-function reductions7. For example
U(Int ,Maybe a) = Nothing, because the rigid structure (here
Int , Maybe) guarantees that they are distinct types, regardless
of any substitution for a .

• If U(σ, τ) = Just θ, then it is possible (but not guaranteed)
that, some substitution φ might make σ and τ equal; that is:
φ (σ) ∼ φ (τ). For example U(F a, Int) = Just ∅ because
perhaps when a = Bool we might have a family instance
F Bool = Int .

7 Readers may be familiar with apartness from previous work (Eisenberg
et al. 2014). To prove the soundness of our injectivity check, we need
U(σ, τ) = Nothing to imply that σ and τ are apart.

Stolarek, Peyton Jones, Eisenberg: Injective Type Families for Haskell 5 2015/5/22

However, it is always the case that such a φ extends θ. Intu-
itively, θ embodies all the information that U can discover with
certainty. We say that θ is a pre-unifier of σ and τ and we call
U a pre-unification algorithm.

These properties are just what we need to refine previous definition
of unsound pairwise check:

Definition 5 (Pairwise injectivity with pre-unification). A pair of
equations F σi = τi and F σj = τj , whose variables are
disjoint, are pairwise-n-injective iff either

1. U(τi , τj) = Nothing, or
2. U(τi , τj) = Just θ, and θ(σi n) = θ(σj n).

As an example, consider G5 above. Applying the pairwise injectiv-
ity with U test to the two right-hand sides, we findU([G a], [Bool]) =
Just ∅, because U immediately returns when it encounters the call
G a . That substitution does not make the LHSs identical, so G5 is
rightly rejected as non-injective.

Now consider this definition:

type family G6 a = r | r → a
type instance G6 [a] = [G a] -- (1)
type instance G6 Bool = Int -- (2)

Obviously, RHSs of equations (1) and (2) don’t unify. Indeed, call-
ing U([G a], Int) yields Nothing and so the pair (1,2) is pairwise-
injective. But the injectivity of G6 really depends on the injectivity
of G : G6 is injective iff G is injective. We discover this by per-
forming pairwise test of equation (1) with itself (after freshening).
This yields U(G a,G a ′). If G is injective U succeeds returning
a substitution [a 7→ a ′] that makes the LHSs identical, so the pair
(1,1) is pairwise-injective. If G is not injective, U still succeeds,
but this time with the empty substitution, so the LHSs do not be-
come identical; so (1,1) would not be pairwise-injective, and G6
would violate its injectivity condition.

This test is compositional: we can check each definition sep-
arately, assuming that the declared injectivity of other definitions
holds. In the case of recursive functions, we assume that the de-
clared injectivity holds of calls to the function in its own RHS; and
check that, under that assumption, the claimed injectivity holds.

4.2.3 Dealing with infinity
Our pre-unification algorithm also deals with Awkward Case 3 in
Section 4.1, repeated here:

type family Z a = r | r → a
type instance Z [a] = (a, a)
type instance Z (Maybe b) = (b, [b])

Classical unification would erroneously declare the RHSs as dis-
tinct but, as we saw in Section 4.1, there is a substitution which
makes them equal. That is the reason for equation (2) in Fig-
ure 2: it conservatively refrains from declaring the types definitely-
distinct, and instead succeeds without extending the substitution.
Thus U((a, a), (b, [b])) returns the substitution [a 7→ b] but since
that doesn’t make the LHSs equal Z is rejected as non-injective.

4.2.4 Closed type families
Consider this example of a closed type family:

type family G7 a = r | r → a where
G7 Int = Bool
G7 Bool = Int
G7 a = a

The type family G7 is injective, and we would like to recognize it
as such. A straightforward application of the rules we have built
up for injectivity will not accept this definition, though. When

comparing the first equation against the third, we unify the RHSs,
getting the substitution [a 7→ Bool]. We apply this to the LHSs
and compare Int with Bool ; these are not equal, and so the pair
of equations appears to be a counter-example to injectivity. Yet,
something is amiss: the third equation cannot reduce with [a 7→
Bool], since the third equation is shadowed by the second one.

This condition is easy to check for. When checking LHSs with
a substitution derived from unifying RHSs, we just make sure that
if LHSs are different then at least one of the two equations cannot
fire after applying the substitution:

Definition 6 (Pairwise injectivity). A pair of equations F σi = τi
and F σj = τj , whose variables are disjoint, are pairwise-n-
injective iff either

1. U(τi , τj) = Nothing, or
2. U(τi , τj) = Just θ, and

(a) θ(σi n) = θ(σj n), or
(b) F θ(σi) cannot reduce via equation i, or
(c) F θ(σj) cannot reduce via equation j

Note that in an open type family, applying a substitution to an
equation’s LHS will always yield a form reducible by that equation,
so the last two clauses are always false. As a result, Definition 6
works for both open and closed type families.

4.3 Soundness
We have just developed a subtle algorithm for checking injectivity
annotations. But is the algorithm sound?

Property 7 (Soundness). If the injectivity check concludes that F
is n-injective, then F is n-injective, in the sense of Definition 1.

In Appendix C, we prove a slightly weaker variant of the prop-
erty above, and we conjecture the full property. The change we
found necessary was to omit equation (7) from the statement of the
pre-unification algorithm U ; this equation allows algorithm U to
look under injective type families on the RHS. Without that line, a
use of an injective type family in an RHS is treated as is any other
type family. Such a modified pre-unification algorithm labels fewer
functions as injective. For example, it would reject

type family F a = r | r → a
type instance F a = Maybe (G a)

even if G were known to be injective.
The full check is quite hard to characterize: what property,

precisely, holds of a substitution produced by U(τ, σ)? We have
said that this substitution is a pre-unifier of τ and σ, but that fact
alone is not enough to prove soundness. We leave a full proof as
future work.

4.4 Completeness
The injectivity check described here is easily seen to be incomplete.
For example, consider the following collection of definitions:

type family F a = r | r → a
type instance F (Maybe a) = G a
type instance F [a] = H a

type family G a = r | r → a
type instance G a = Maybe a

type family H a = r | r → a
type instance H a = [a]

The type function F is a glorified identity function, defined only
over lists and Maybes. It is injective. Yet, our check will reject it,
because it does not reason about the fact that the ranges of G and
H are disjoint. Indeed, as argued at the beginning of Section 4, any
compositional algorithm will suffer from this problem.

Stolarek, Peyton Jones, Eisenberg: Injective Type Families for Haskell 6 2015/5/22

Yet, we would like some completeness property. We settle for
this one:

Property 8 (Completeness). Suppose a type family F has equa-
tions such that for all right-hand sides τ :

• τ is type-family-free,
• τ has no repeated use of a variable, and
• τ is not a bare variable.

If F is n-injective, then the injectivity check will conclude that F is
n-injective.

Under these conditions, the pairwise injectivity check becomes the
much simpler unifying pairwise check of Definition 4, which is
enough to guarantee completeness. Note that the conditions mean
that Algorithm U operates as a classical unification algorithm (ef-
fectively eliminating equations (2), (7), (8), and (9) from the defi-
nition of U) and that we no longer have to worry about the single-
equation checks motivated by Awkward Case 2 (clause 1 of Defi-
nition 2). The proof appears in Appendix D.

5. Exploiting injectivity
It is all very well knowing that a function is injective, but how is
this fact useful? There are two separate ways in which injectivity
can be exploited:

Improvement guides the type inference engine, by helping it to
fix the values of as-yet-unknown unification variables. Improve-
ment comes in two parts: improvement between “wanted” con-
straints (Section 5.1) and improvement between wanted con-
straints and top-level type-family equations (Section 5.2). These
improvement rules correspond directly to similar rules for func-
tional dependencies, as we discuss in Section 7.

Decomposition of “given” constraints enriches the set of available
proofs, and hence makes more programs typeable (Section 5.3).
Unlike improvement, which affects only inference, decomposi-
tion requires a small change to GHC’s explicitly typed interme-
diate language, System FC.

5.1 Improvement of wanted constraints
Suppose we are given these two definitions:

f :: F a → Int
g :: Int → F b

Is the call (f (g 3)) well typed? Obviously yes, but it is hard for a
type inference engine to determine that this is so without knowing
about the injectivity of F . Suppose we instantiate the call to f with
a unification variable α, and the call to g with β. Then we have
to prove that F α ∼ F β; we use the term “wanted constraint”
for constraints that the inference engine must solve to ensure type
safety.

We can certainly solve this constraint if we clairvoyantly unify
α := β. But the inference engine only performs unifications that it
knows must hold; we say that it performs only guess-free unification
(Vytiniotis et al. 2011, Section 3.6). Why? Suppose that (in a larger
example) we had this group of three wanted constraints:

F α ∼ F β α ∼ Int β ∼ Bool

Then the right thing to do would be unifyα := Int and β := Bool,
and hope that F Int and F Bool reduce to the same thing. Instead
unifying α := β would wrongly lead to failure.

So, faced with the constraint F α ∼ F β, the inference engine
does not in general unify α := β; so the constraint F α ∼ F β is
not solved, and hence f (g 3) will be rejected. But if we knew that
F was injective, we can unify α := β without guessing.

Improvement (a term due to Mark Jones (Jones 1995, 2000)) is
a process that adds extra "derived" equality constraints that may
make some extra unifications apparent, thus allowing inference to
proceed further without having to make guesses. In the case of
an injective F , improvement adds α ∼ β, which the constraint
solver can solve by unification. In general, improvement of wanted
constraint is extremely simple:

Definition 9 (Wanted improvement). Given the wanted constraint
F σ ∼ F τ , add the derived wanted constraint σn ∼ τn for each
n-injective argument of F .

Why is this OK? Because if it is possible to prove the original
constraint F σ ∼ F τ , then (by Definition 1) we will also have
a proof of σn ∼ τn. So adding σn ∼ τn as a new wanted con-
straint does not constrain the solution space. Why is it beneficial?
Because, as we have seen, it may expose additional guess-free uni-
fication opportunities that that solver can exploit.

5.2 Improvement via type family equations
Suppose we have the top-level equation

type instance F [a] = a → a

and we are trying to solve a wanted constraint F α ∼ (Int →
Int), where α is a unification variable. The top-level equation is
shorthand for a family of equalities, namely its instances under
substitutions for a , including F [Int] ∼ (Int → Int). Now
we can use the same approach as in the previous section to add
a derived equality α ∼ [Int]. That in turn will let the constraint
solver unify α := [Int], and thence solve the wanted constraint. So
the idea is to match the RHS of the equation against the constraint
and, if the match succeeds add a derived equality for each injective
argument.

Matters are more interesting when there is a function call on
the RHS of the top-level equation. For example, consider G6 from
Section 4.2.2, when G is injective:

type family G6 a = r | r → a
type instance G6 [a] = [G a]
type instance G6 Bool = Int

Suppose we have a wanted constraint G6 α ∼ [Int]. Does the
RHS of the equation, [G a], match the RHS of the constraint
[Int]? Apparently not; but this is certainly the only equation for
G6 that can apply (because of injectivity). So the argument αmust
be a list, even if we don’t know what its element type is. So we
can produce a new derived constraint α ∼ [β], where β is a
fresh unification variable. This expresses some information about
α (namely that it must be a list type), but not all (the fresh β leaves
open what the list element type might be). We might call this partial
improvement.

Partial improvement is very useful indeed! We can now unify
α := [β], so the wanted constraint becomes G6 [β] ∼ [Int]. Now
G6 can take a step, yielding [G β] ∼ [Int], and decompose to
get G β ∼ Int . Now the process may repeat, with G instead
of G6 . The crucial points are that (a) the matching step, like
the pre-unification algorithm U , behaves specially for type-family
calls; and (b) we instantiate any unmatched variables with fresh
unification variables. More formally:

Definition 10 (Top-level improvement). Given:

• an equation i of type family F , F σi = τi, and
• a wanted constraint F σ0 ∼ τ0

such that

• M(τi, τ0) = Just θ, and
• F θ(σi) can reduce via equation i

Stolarek, Peyton Jones, Eisenberg: Injective Type Families for Haskell 7 2015/5/22

then define θ′ by extending θ with a 7→ α, for every a in σi that is
not in dom(θ), where α is a fresh unification variable; and add a
derived constraint θ′(σi n) ∼ σ0n, for every n-injective argument
of F .

Here M is defined just like U in Figure 2, except lacking
equations (4) and (9). That is, M does one-way matching rather
than two-way unification. (We assume that the variables of the two
arguments to M do not overlap.)

5.3 Decomposing given equalities
Consider the following function, where F is an injective type fam-
ily:

fid :: (F a ∼ F b)⇒ a → b
fid x = x

Should that type-check? Absolutely. We assume that F a ∼ F b,
and by injectivity (Definition 1), we know that a ∼ b. But, arrang-
ing for GHC to compile this requires a change to System FC. Here

In FC, all type abstractions, applications, and casts are explicit.
FC code uses a proof term, or coercion, that witnesses the truth
of each equality constraint. In FC, fid takes an argument coercion
c :: F a ∼ F b, but needs a coercion of type a ∼ b to cast x :: a
to the desired result type b. The FC code for fid looks like this:

fid :: ∀ a b. (F a ∼ F b)⇒ a → b
fid = Λa b → λ(c :: F a ∼ F b) (x :: a)→ x . (nth0 c)

The coercion (nth0 c) is a proof term witnessing a ∼ b; using
nth to decompose a type family application is the extension re-
quired to FC, as we discuss next.

5.3.1 Adding type family injectivity to FC
To a first approximation, System FC is Girard’s System F, enhanced
with equality coercions. That is, there is a form of expression e . γ
that casts e to have a new type, as shown by the following typing
rule:

Γ ` e : τ1 Γ ` γ : τ1 ∼ τ2
Γ ` e . γ : τ2

TM_CAST

The unusual typing judgement Γ ` γ : τ1 ∼ τ2 says that γ is a
proof, or witness, that type τ1 equals type τ2.

Coercions γ have a variety of forms, witnessing the properties
of equality required from System FC. For example, there are forms
witnessing reflexivity, symmetry, and transitivity, as well as con-
gruence of application; the latter allows us to prove that types τ1 τ2
and σ1 σ2 are equal from proofs that τ1 ∼ σ1 and τ2 ∼ σ2.

The coercion form that concerns us here is the one that wit-
nesses injectivity. In previous versions of FC, the rule looked thus:

Γ ` γ : H τ ∼ H σ

Γ ` nthi γ : τi ∼ σi

CO_NTH

In this rule, H is a type constant (such as Maybe or (→)), all
of which are considered to be injective in Haskell. The coercion
nthi γ witnesses this injectivity by proving equality among argu-
ments from the equality of the applied datatype constructor.

To witness injective type families, we must add a new rule as
follows:

Γ ` γ : F τ ∼ F σ
F is i-injective

Γ ` nthi γ : τi ∼ σi

CO_NTHTYFAM

In this rule, F is a type family. We can now extract an equality
among arguments from the equality proof of the type family appli-
cations.

U(a : κ1, τ : κ2) θ=U(κ1, κ2) θ a ∈ ftv(θ(τ))
U(a : κ1, τ : κ2) θ=U(κ1, κ2) ([a 7→ θ(τ)] ◦ θ) a 6∈ ftv(θ(τ))

Figure 3. Modified equations (2) and (3) from Figure 2 that make
the pre-unification algorithm U kind-aware.

5.3.2 Soundness of type family injectivity
Having changed GHC’s core language, we now have the burden
of proving our change to be type safe. The key lemma we must
consider is the consistency lemma. Briefly, the consistency lemma
states that, in a context with no equality assumptions, it is impossi-
ble to prove propositions like Int ∼ Bool , or (a → b) ∼ IO ().
With the consistency lemma in hand, the rest of the proof of type
safety would proceed as it has in previous publications, for example
Breitner et al. (2014a).

Even stating the key lemmas formally would require diving
deeper into System FC than is necessary here; the lemmas and their
proofs appear in Appendix C.

5.4 Partial type functions
Both open and closed type families may be partial; that is, defined
on only part of their domain. For example, consider this definition
for an injective function F :

type family F a = r | r → a
type instance F Int = Bool
type instance F [a] = a → a

The type F [Char] is equal to Char → Char , by the second
instance above; but F Bool is equal only to itself since it matches
no equation. Nevertheless, F passes our injectivity test (Section 4).

You might worry that partiality complicates our story for in-
jectivity. If we had a wanted constraint F Bool ∼ F Char , our
improvement rules would add the derived equality Bool ∼ Char ,
which is manifestly insoluble. But nothing has gone wrong: the
original wanted constraint was also insoluble (that is, we could not
cough up a coercion that witnesses it), so all the derived constraint
has done is to make that insolubility more stark.

In short, the fact that type functions can be partial does not gum
up the works for type inference.

6. Injectivity in the presence of kind
polymorphism

Within GHC, kind variables are treated like type variables: type
family arguments can include both kinds and types. Thus type
families can be injective not only in type arguments but also in kind
arguments. To achieve this we allow kind variables to be mentioned
in the injectivity condition, just like type variables. Moreover, if
a user lists a type variable b as injective, then all kind variables
mentioned in b’s kind are also marked as injective. For example:

type family G (a :: k1) (b :: k2) (c :: k1)
= (r :: k3) | r → b k1

type instance G Maybe Int (Either Bool) = Char
type instance G IO Int [] = Char
type instance G Either Bool (→) = Maybe

The injectivity annotation on G states that it is injective in b – and
therefore also in b’s kind k2 – as well as kind k1 , which is the kind
of both a and c. We could even declare k3 as injective – the return
kind is also an input argument to a type family.

To support injectivity in kinds our pre-unification algorithm U
needs a small adjustment to make it kind-aware – see modified

Stolarek, Peyton Jones, Eisenberg: Injective Type Families for Haskell 8 2015/5/22

equations (2) and (3) in Figure 3. Other definitions described in
Sections 4 and 5 remain unchanged.

In Haskell source, in contrast to within GHC, kind arguments
are treated quite separately from type arguments. Types are always
explicit, while kinds are always implicit. This can lead to some
surprising behaviour:

type family P (a :: k0) = (r :: k1) | r → a
type instance P ’[] = ’[]

At first glance, P might look injective, yet it is not. Injectivity
in a means injectivity also in k0 . But the argument a and result
r can have different kinds and so k0 is not determined by r .
This becomes obvious if we write kind arguments explicitly using
a hypothetical syntax, where the kind arguments are written in
braces:

type instance P {k0} {k1} (’[] {k0}) = (’[] {k1})

The syntax (’[] {k}) indicates an empty type-level list, holding
elements of kind k 8. It is now clear that k0 is not mentioned
anywhere in the RHS, and thus we cannot accept it as injective.

7. Functional dependencies
Injective type families are very closely related to type classes with
functional dependencies (Jones 2000), which have been part of
GHC for many years. Like injectivity, functional dependencies ap-
pear quite simple, but are remarkably subtle in practice (Sulzmann
et al. 2007).

Functional dependencies express a type level function as a re-
lation. For example, here is a type-level function F expressed us-
ing functional dependencies (on the left) and type families (on the
right):

class F a r | a → r type family F a = r
instance F [a] (Maybe a) type instance F [a] = Maybe a
instance F Int Bool type instance F Int = Bool

f :: F a r ⇒ a → r f :: a → F a

To express that F is injective using functional dependencies, one
adds an additional dependency:

class F a r | a → r , r → a

This syntax motivates our choice of syntax for injectivity annota-
tions (Section 3.2).

Our injectivity check mirrors precisely the consistency checks
necessary for functional dependencies. In Section 4.2.2 we dis-
cussed the issues that arise when a type family call appears in the
RHS of a type instance, such as:

type instance F [a] = [G a]

Precisely the same set of issues arises with functional dependen-
cies, where the instance declaration would look like:

instance G a rg ⇒ F [a] [rg]

This instance declaration would fail the coverage condition of
(Jones 2000); in effect, Jones does not allow function calls on the
RHS. This restriction was lifted by Sulzmann et al, via the liberal
coverage condition (Sulzmann et al. 2007), in essentially the same
way that we do.

Using “improvement” to guide type inference (Section 5), in-
cluding the partial improvement of Section 5.2, was suggested by
Mark Jones for his system of qualified types (Jones 1995), and was

8 You can see similar output from GHC – without the braces – if you use
-fprint-explicit-kinds.

absolutely essential for effective type inference with functional de-
pendencies (Jones 2000). Indeed, the improvement rules of Sec-
tion 5 correspond precisely to the improvement rules for functional
dependencies (Sulzmann et al. 2007).

7.1 Advantages of type families
A superficial but important advantage of type families is simply
that they use functional, rather than relational, notation, thus allow-
ing programmers to use same programming style at the type level
that they use at the term level. Recognizing this, Jones also pro-
poses some syntactic sugar to make the surface syntax of functional
dependencies more function-like (Jones 2008). Syntactic sugar al-
ways carries a price, of course: since the actual types will have
quantified constraints that are not visible to the programmer, the
compiler has to work hard to express error messages, inferred types,
and so on, in the form that the programmer expects.

A more substantial difference is that type families are fully
integrated into System FC, GHC’s typed intermediate language.
Consider, for example:

type instance F Int = Bool
data T a where {MkT :: F a → T a }
f :: T Int → Bool
f (MkT x) = not x

This typechecks fine. But with functional dependencies we would
write

class F a r | a → r
instance F Int Bool
data T a where {MkT :: F a r ⇒ r → T a }

and now the definition of f would be rejected because r is an exis-
tentially captured type variable of MkT . One could speculate on a
variant of System FC that accommodated functional dependencies,
but no such calculus currently exists.

7.2 Advantages of functional dependencies
Functional dependencies make it easy to specify more complex
dependencies than mere injectivity. For example9:

data Nat = Zero | Succ a

class Add a b r | a b → r , r a → b
instance Add Zero b b
instance (Add a b r)⇒ Add (Succ a) b (Succ r)

Note the dependency “r a → b”, which says that the result and
first argument (but not the result alone) are enough to fix the second
argument. This dependency leads to an improvement rule: from the
wanted constraint (Add s t1) ∼ (Add s t2), add the derived
equality t1 ∼ t2 .

Our design can similarly be extended, by writing:

type family AddTF a b = r | r a → b where
AddTF Zero b = b
AddTF (Succ a) b = Succ (AddTF a b)

The check that the injectivity annotation is sound is a straightfor-
ward extension of Definitions 2 and 6, and the improvement rule is
just as for functional dependencies. (In the extended rule, Clause 1
of Definition 2 holds if any of the types on the left of the depen-
dency arrow are not a bare variable or function application.) How-
ever, this remains as future work: we have not yet extended the
metatheory or implementation to accommodate it.

9 Here Nat is being used as a kind, using the DataKinds exten-
sion (Yorgey et al. 2012).

Stolarek, Peyton Jones, Eisenberg: Injective Type Families for Haskell 9 2015/5/22

7.3 Summary
So, are type families merely functional dependencies in a differ-
ent guise? At a fundamental level, yes: they both address a similar
question in a similar way. But it is always illuminating to revisit
an old landscape from a new direction, and we believe that is very
much the case here, especially since the landscape of functional
dependencies is itself very subtle (Sulzmann et al. 2007). Under-
standing the connection better is our main item of further work.
For example:

• Adding richer functional dependencies to type families (Sec-
tion 7.2) is an early priority.

• Could we take advantage of the metatheory of functional de-
pendencies to illuminate that of type families; or vice versa?

• What would a version of System FC that truly accommodated
functional dependencies look like?

• Could closed type families move beyond injectivity and func-
tional dependencies by applying closed-world reasoning that
derives solutions of arbitrary equalities, provided a unique so-
lution exists? Consider this example:

type family J a where
J Int = Char
J Bool = Char
J Double = Float

One might reasonably expect that if we wish to prove (J a ∼
Float), we will simplify to (a ∼ Double). Yet GHC does not
do this as neither injectivity nor functional dependencies can
discover this solution.

8. Other related work
8.1 Injectivity for the Utrecht Haskell Compiler
Implementing injective type families for the Utrecht Haskell Com-
piler was proposed by Serrano Mena (2014). In private correspon-
dence Serrano Mena informed us that these ideas were not devel-
oped further or implemented. Thus, to our best knowledge, our
work is the first theoretical and practical treatment of injectivity
for Haskell.

8.2 Injectivity in other languages
The Agda (Norell 2007) compiler is able to infer head injectivity10,
a notion weaker than the injectivity presented in this paper. For a
function f , if the right-hand sides of all clauses of f immediately
disunify, then f is called head-injective or constructor-headed.
"Immediately disunify" means that the outer-most constructors in
the RHSs are distinct. Knowledge that a function is head-injective
can then be used to generate improvements in the same way it is
used in our solution. Our solution is more powerful: it recurs over
identical constructors, allows type families in RHSs, and permits
declaring injectivity only in some arguments.

Other dependently-typed languages like Coq (The Coq develop-
ment team 2014) or Idris (Brady 2013) do not provide any special
way of declaring that a function is injective. In these languages the
user can prove injectivity of a function using mechanisms provided
by the language (e.g. tactics) and appeal to injectivity explicitly
whenever this property is required to make progress during type
checking. We believe that these languages could benefit from ap-
proach developed here – our results should carry over to these other
languages nicely.

10 Based on private correspondence with Andreas Abel.

8.3 Injectivity of term-rewriting systems
Haskell type families share much with traditional term-rewriting
systems (TRSs). (For some general background on TRSs, see
Baader and Nipkow (1998).) In particular, Haskell type family
reduction forms a deterministic constructor term-rewriting system.
There has been some work done on checking TRSs for injectiv-
ity, for example that of Nishida and Sakai (2010). Their work ap-
pears to be the state-of-the-art in the term-rewriting community.
Although a close technical comparison of our work to theirs is
beyond the scope of this paper, Nishida and Sakai restrict their
injectivity analysis to total, terminating systems. Our work also
considers partial and non-terminating functions.

9. Conclusion
With this work, we give users a new tool for more expressive type-
level programming, and one that solves practical problems arising
in the wild (Section 2). It fills out a missing corner of GHC’s
support for type-level programming, and gives an interesting new
perspective on functional dependencies (Section 7.3).

Our compositional approach for determining injectivity of func-
tions defined by pattern matching may be of more general utility.

Acknowledgements We gratefully acknowledge helpful feedback
from Iavor Diatchki, Martin Sulzmann, Dimitrios Vytiniotis, and
Stephanie Weirich.

References
F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge

University Press, New York, NY, USA, 1998. ISBN 0-521-45520-0.

E. Brady. Idris, a general-purpose dependently typed programming lan-
guage: Design and implementation. Journal of Functional Program-
ming, 23(5):552–593, Sept. 2013.

J. Breitner, R. A. Eisenberg, S. Peyton Jones, and S. Weirich. Safe zero-cost
coercions for Haskell. In ACM SIGPLAN International Conference on
Functional Programming, pages 189–202, Sept. 2014a.

J. Breitner, R. A. Eisenberg, S. Peyton Jones, and S. Weirich. Safe zero-cost
coercions for Haskell (extended version). Technical Report MS-CIS-14-
07, University of Pennsylvania, 2014b.

M. M. T. Chakravarty, G. Keller, and S. Peyton Jones. Associated type
synonyms. In ACM SIGPLAN International Conference on Functional
Programming, 2005a.

M. M. T. Chakravarty, G. Keller, S. Peyton Jones, and S. Marlow. As-
sociated types with class. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2005b.

J. Cheney and R. Hinze. First-class phantom types. Technical report,
Cornell University, 2003.

R. A. Eisenberg, D. Vytiniotis, S. Peyton Jones, and S. Weirich. Closed
type families with overlapping equations (extended version). Technical
Report MS-CIS-13-10, University of Pennsylvania, 2013.

R. A. Eisenberg, D. Vytiniotis, S. Peyton Jones, and S. Weirich. Closed
type families with overlapping equations. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2014.

M. P. Jones. Simplifying and improving qualified types. In ACM Confer-
ence on Functional Programming and Computer Architecture, 1995.

M. P. Jones. Type classes with functional dependencies. In European
Symposium on Programming, 2000.

M. P. Jones. Language and program design for functional dependencies. In
ACM Haskell Symposium. ACM, 2008.

S. Lindley and C. McBride. Hasochism: the pleasure and pain of depen-
dently typed Haskell programming. In ACM SIGPLAN Haskell Sympo-
sium, pages 81–92, 2013. .

N. Nishida and M. Sakai. Proving injectivity of functions via program
inversion in term rewriting. In M. Blume, N. Kobayashi, and G. Vidal,

Stolarek, Peyton Jones, Eisenberg: Injective Type Families for Haskell 10 2015/5/22

editors, Functional and Logic Programming, volume 6009 of Lecture
Notes in Computer Science, pages 288–303. Springer, 2010.

U. Norell. Towards a practical programming language based on dependent
type theory. PhD thesis, Chalmers University of Technology, 2007.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In ACM SIGPLAN Inter-
national Conference on Functional Programming, 2006.

A. Serrano Mena. Branching, disjointness and injectivity for OutsideIn(X).
ICFP 2014 poster, Sept. 2014.

J. Stolarek, S. Peyton Jones, and R. A. Eisenberg. Injective type families
for Haskell (extended version). Technical report, Politechnika Łódzka,
2015. URL http://ics.p.lodz.pl/~stolarek/_media/pl:
research:stolarek_peyton-jones_eisenberg_injectivity_
extended.pdf.

M. Sulzmann, G. Duck, S. Peyton Jones, and P. Stuckey. Understanding
functional dependencies via constraint handling rules. Journal of Func-
tional Programming, 17:83–129, 2007.

The Coq development team. The Coq Proof Assistant reference manual,
version 8.4. Technical report, TypiCal Project (formerly LogiCal), Nov.
2014.

D. Vytiniotis, S. Peyton Jones, T. Schrijvers, and M. Sulzmann. Out-
sideIn(X): Modular type inference with local assumptions. Journal of
Functional Programming, 21(4-5):333–412, Sept. 2011.

B. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and J. P.
Magalhães. Giving Haskell a promotion. In ACM SIGPLAN Workshop
on Types in Language Design and Implementation, 2012.

A. Popularity of selected language extensions for
type-level programming

In Section 1 we made a claim that type families are the most pop-
ular language extension for type-level programming in Haskell.
That claim is based on analysis of Hackage, Haskell’s commu-
nity package database. We were interested in usage of five lan-
guage extensions that in our opinion add the most powerful features
to type-level language: TypeFamilies , GADTs , FunctionalDepen-
dencies , DataKinds and PolyKinds . To measure their popular-
ity we downloaded all packages on Hackage (per list available at
https://hackage.haskell.org/packages/names). Then we
used the grep program to search each package directory for ap-
pearances of strings naming the given language extensions. This
located language extensions enabled both in .cabal files and with
LANGUAGE pragmas. The exact obtained numbers are reported in
Table 1.

Language extension no. of using packages
TypeFamilies 1092
GADTs 612
FunctionalDependencies 563
DataKinds 247
PolyKinds 109

Table 1. Popularity of selected type-level programming language
extensions.

Downside of this approach is that it can give false positives by
finding strings without considering their context inside the source
code. A good example of when this happens is haskell-src-exts
package that does not use any of the above extensions but mentions
them in the parser source code.

All measurements were conducted on a copy of Hackage ob-
tained on 19th February 2015.

B. An excerpt of System FC
We present an excerpt of System FC here. For the full details, please
see previous work, such as Breitner et al. (2014b).

B.1 Grammar
Metavariables:

a, b type variables c coercion variables
T algebraic datatypes F type functions
C type family axioms

Nonterminals:
H ::= T | (→) | (⇒) | (∼) type constants

κ ::= ? | κ1 → κ2 kinds

τ, σ ::= types
| a type variable
| τ1 τ2 application
| H type constant
| ∀ a:κ.τ polymorphism
| F τ type function

ψ ::= value types
| H type constant
| ∀ a:κ.τ polymorphism
| ψ τ application

γ ::= 〈τ〉 | sym γ | γ1 # γ2 | F (γ) coercions
| γ1 γ2 | ∀a:κ.γ | c | C (τ)
| nthi γ | left γ | right γ | γ@τ

θ ::= ∅ | θ, [a 7→ τ] substitutions

Γ ::= ∅ | Γ, a:κ | . . . typing contexts

B.2 The coercion formation rules
Γ ` γ : φ

Γ ` τ : κ

Γ ` 〈τ〉 : τ ∼ τ CO_REFL

Γ ` γ : σ ∼ τ
Γ ` sym γ : τ ∼ σ CO_SYM

Γ ` γ1 : τ1 ∼ τ2
Γ ` γ2 : τ2 ∼ τ3

Γ ` γ1 # γ2 : τ1 ∼ τ3
CO_TRANS

Γ ` γ : τ ∼ σ
Γ ` F τ : κ Γ ` F σ : κ

Γ ` F (γ) : F τ ∼ F σ
CO_TYFAM

Γ ` γ1 : τ1 ∼ σ1

Γ ` γ2 : τ2 ∼ σ2

Γ ` τ1 τ2 : κ Γ ` σ1 σ2 : κ

Γ ` γ1 γ2 : τ1 τ2 ∼ σ1 σ2
CO_APP

Γ, a:κ ` γ : τ ∼ σ
Γ ` ∀a:κ.γ : ∀ a:κ.τ ∼ ∀ a:κ.σ

CO_FORALL

c:τ ∼ σ ∈ Γ

Γ ` c : τ ∼ σ CO_VAR

C : [a:κ].σ1 ∼ σ2 Γ ` τ : κ

Γ ` C (τ) : σ1[τ/a] ∼ σ2[τ/a]
CO_AXIOM

Γ ` γ : H τ ∼ H σ

Γ ` nthi γ : τi ∼ σi

CO_NTH

Γ ` γ : F τ ∼ F σ
F is i-injective

Γ ` nthi γ : τi ∼ σi

CO_NTHTYFAM

Stolarek, Peyton Jones, Eisenberg: Injective Type Families for Haskell 11 2015/5/22

http://ics.p.lodz.pl/~stolarek/_media/pl:research:stolarek_peyton-jones_eisenberg_injectivity_extended.pdf
http://ics.p.lodz.pl/~stolarek/_media/pl:research:stolarek_peyton-jones_eisenberg_injectivity_extended.pdf
http://ics.p.lodz.pl/~stolarek/_media/pl:research:stolarek_peyton-jones_eisenberg_injectivity_extended.pdf
https://hackage.haskell.org/packages/names

Γ ` γ : τ1 τ2 ∼ σ1 σ2

Γ ` τ1 : κ Γ ` σ1 : κ

Γ ` left γ : τ1 ∼ σ1
CO_LEFT

Γ ` γ : τ1 τ2 ∼ σ1 σ2

Γ ` τ2 : κ Γ ` σ2 : κ

Γ ` right γ : τ2 ∼ σ2
CO_RIGHT

Γ ` γ : ∀ a:κ.τ1 ∼ ∀ a:κ.σ1

Γ ` τ : κ

Γ ` γ@τ : τ1[τ/a] ∼ σ1[τ/a]
CO_INST

C. Proof of type family injectivity soundness
We follow along the structure of the type soundness proof of Sys-
tem FC as written in Breitner et al. (2014b); some passages in this
appendix are taken verbatim from that work. (Some passages are
also taken verbatim from Eisenberg et al. (2014).) Breitner et al.
(2014b) is concerned quite intricately with roles. Fortunately, roles
do not interact with type family injectivity, because type families
always only operate at nominal roles. We thus omit roles and the
distinction between datatypes and newtypes throughout.

Definition 11 (Type consistency). Two types τ1 and τ2 are consis-
tent if, whenever they are both value types:

1. If τ1 = H σ, then τ2 = H σ′;
2. If τ1 = ∀ a:κ.σ then τ2 = ∀ a:κ.σ′.

Note that if either τ1 or τ2 is not a value type, then they are
vacuously consistent.

Definition 12 (Context consistency). The global context (contain-
ing datatype and type family definitions) is consistent if, whenever
∅ ` γ : τ1 ∼ τ2, τ1 and τ2 are consistent.

If the global context is consistent, that means that no coercion
exists (in an empty environment) that proves, say, Int ∼ Bool .
In order to prove context consistency, we define a type reduction
relation τ σ, show that the relation preserves value type heads,
and then show that any well-typed coercion corresponds to a path
in the rewrite relation.

Here is the type rewrite relation:

τ σ Type reduction

τ τ
RED_REFL

τ1 σ1

τ2 σ2

τ1 τ2 σ1 σ2
RED_APP

τ σ

∀ a:κ.τ ∀ a:κ.σ
RED_FORALL

τ σ

F τ F σ
RED_TYFAM

C : [a:κ].τ1 ∼ τ2
τ1[σ/a] τ2[σ/a]

RED_AXIOM

Definition 13 (Joinability). We say that two types τ1 and τ2 are
joinable, written τ1 ⇔ τ2, iff there exists σ such that τ1 ∗ σ
and τ2 ∗ σ.

Lemma 14 (Rewrite substitution). Let a be the free variables in a
type σ. If τ τ ′, then σ[τ/a] σ[τ ′/a].

Proof. Proved as Lemma 26 in Breitner et al. (2014b).

Lemma 15 (Confluence). If τ ∗ σ1 and τ ∗ σ2, then
σ1 ⇔ σ2.

Proof. Proved as Lemma 32 in Breitner et al. (2014b).

Lemma 16 (Non-linear patterns). Let a be the free variables in a
type τ . We require that no type families appear in τ . If, for some
σ, τ [σ/a] τ ′, then there exist σ′ such that τ ′ ∗ τ [σ′/a] and
σ ∗ σ′.

This lemma is very similar to the Pattern lemma (Lemma 29) of
Breitner et al. (2014b). It differs in three ways:

1. This lemma does not require each of the a to appear only once
in τ ,

2. it allows the σ to multistep to reach the σ′,

3. and it concludes that τ ′ multisteps to τ [σ′/a], but these might
not equal.

This lemma cannot replace the original Pattern lemma, however,
because it is critical in the proof of confluence that σ can reach σ′
in one step. The proof of this lemma, in turn, uses confluence.

Proof. We proceed by induction on the structure of τ .

Case τ = a: There is just one free variable (a), and thus just one
type σ. We have σ τ ′. Let σ′ = τ ′ and we are done.

Case τ = τ1 τ2: Partition the free variables a into three lists: b1
are the variables appearing only in τ1, b2 are the variables ap-
pearing only in τ2, and b3 are the variables appearing in both.
We remember the index of each b in the original a. Partition σ
into σ1, σ2, and σ3, corresponding to the partition of a. We see
that τ1[σ1/b1][σ3/b3] τ2[σ2/b2][σ3/b3] τ ′. This must be by
RED_APP. Thus, τ ′ = τ ′1 τ

′
2 and τ1[σ1/b1][σ3/b3] τ ′1 and

τ2[σ2/b2][σ3/b3] τ ′2. We then use the induction hypothe-
sis to get σ′1, σ′31 such that τ ′1 ∗ τ1[σ′1/b1][σ′31/b3]. Simi-
larly, we get σ′2, σ′32 such that and τ ′2 ∗ τ2[σ′2/b2][σ′32/b3].
The induction hypothesis also tells us σ1 ∗ σ′1, σ3 ∗ σ′31,
σ2 ∗ σ′2, and σ3 ∗ σ′32. We use confluence (Lemma 15) to
get σ′30 such that σ′31 ∗ σ′30 and σ′32 ∗ σ′30. By Lemma 14,
we see that τ1[σ′1/b1][σ′31/b3] ∗ τ1[σ′1/b1][σ′30/b3] and
similarly for τ2. Let σ′ be the list of types made from σ′1, σ′2,
and σ′30, undoing the partition to make the b earlier. We can now
conclude τ1[σ/a] τ2[σ/a] ∗ τ2[σ′/a] τ2[σ′/a] as desired.

Case τ = H : Trivial.
Case τ = ∀ b:κ.τ0: By the induction hypothesis.
Case τ = F τ : Impossible, by assumption.

We need to bring in notions of flattening and apartness from
Eisenberg et al. (2014):

Definition 17 (Flattening). To flatten a type τ into τ ′, written τ ′ =
flatten(τ), process the type τ in a top-down fashion, replacing
every type family application with a type variable. Two or more
syntactically identical type family applications are flattened to the
same variable; distinct type family applications are flattened to
distinct fresh variables.

Definition 18 (Apartness). To test for apart(τ1, τ2), let τ ′1 =
flatten(τ1) and τ ′2 = flatten(τ2) and check unify∞(τ ′1, τ

′
2). If

this unification fails, then τ1 and τ2 are apart. More succinctly:
apart(τ1, τ2) = ¬unify∞(flatten(τ1), flatten(τ2)).

Property 19 (U and apartness). If U(τ1, τ2) ∅ returns Nothing,
then apart(τ1, τ2).

Stolarek, Peyton Jones, Eisenberg: Injective Type Families for Haskell 12 2015/5/22

This property holds by the construction of algorithm U . Note
that U returns Nothing only when there is a direct type constant
mismatch.

Lemma 20 (Apartness is stable under substitution). If apart(τ1, τ2),
then for all substitutions θ, apart(θ(τ1), θ(τ2)).

Proof. Proved as Property 12 of Eisenberg et al. (2013). The gener-
alization used here does not change the substance of the proof.

In order to prove the soundness of the injectivity check, we will
need to know that apart types are not joinable. It is hard to prove
this statement directly, as it is equivalent to proving consistency
of the type system with both non-linear types and non-terminating
type families. As argued in Eisenberg et al. (2014) and Breitner
et al. (2014a), this proof seems to require a positive answer to RTA
Open Problem #79.11

Assumption 21 (Apart types are not joinable). If apart(τ1, τ2),
then ¬(τ1 ⇔ τ2).

Previous work requires an assumption of either linear patterns
or termination to prove soundness. We are no different, and the
above assumption is not, by itself enough. So, from here on out, we
will assume that all type family reductions terminate.

Assumption 22 (Termination). There exists no infinite (non-
reflexive) chain of rewrites.

Definition 23 (Algorithm U∗). Define Algorithm U∗ to be identi-
cal to Algorithm U with the difference that line 7 is missing.

The removed line is the one that treats occurrences of injective
type families differently than other type families. The proof pro-
ceeds by showing that an injectivity check based on U∗ is sound.
We then add back in the special treatment of injective type families.

Property 24 (Pre-unifier). If U∗(τ1, τ2) ∅ = Just θ, then θ is a
pre-unifier of flatten(τ1) and flatten(τ2).

Note that a pre-unifier of τ1 and τ2 need not be a pre-unifier
of flatten(τ1) and flatten(τ2), as the former may have more map-
pings corresponding to variables mentioned only under type fam-
ily applications. However, because U∗ never looks under type
families, it will produce always a pre-unifier for flatten(τ1) and
flatten(τ2).

Lemma 25 (Injective type families with U∗). If F τ ⇔ F σ and
F is i-injective according to Algorithm U∗, then τi ⇔ σi .

Proof. Let τ0 be the common reduct of F τ and F σ. We consider
the chain of rewrites F τ ∗ τ0 and F σ ∗ τ0. These chains
(ignoring uses of RED_REFL) have one of two forms: (1) either
they comprise only uses of RED_TYFAM, or (2) they comprise
only uses of RED_TYFAM, followed by a use of RED_AXIOM,
followed by applications of arbitrary rules.

We consider combinations of these cases separately:

Both chains are of form (1): It must be that τ0 = F τ ′ for some
τ ′ with τ ∗ τ ′ and σ ∗ τ ′. Regardless of injectivity, we are
done.

One chain of each form: Suppose without loss of generality that
the F τ chain is of form (1). Once again, it must be that
τ0 = F τ ′ where τ ∗ τ ′. Consider the rewriting of F σ.
Call the result of the first use of RED_AXIOM σ0. We know, by
assumption, that σ0 ∗ F τ ′. By inspection of the rewriting
rules (and that all left-hand sides of axioms are type family
applications), we see that σ0 must look like F ′ σ0 for some
F ′ and σ0 – only a type headed by a type family can rewrite to

11 http://www.win.tue.nl/rtaloop/problems/79.html

a type headed by a type family. However, by rule RED_AXIOM,
we see that F ′ σ0 is the substituted RHS of an axiom. By the
injectivity check, we know that the RHS of an injective type
family may not be type family application. Thus, the RHS must
be a bare type variable, a. The injectivity check then says that
the LHS of the axiom must be F a. (We know that the family
is F because F σ multisteps to the type that is rewritten by
RED_AXIOM only by RED_TYFAM.) We can thus drop all of
the overbars, knowing that the argument list contains just one
type.
Thus, the common reduct τ0 must be F τ ′ and τ ∗ τ ′. We
also know that F σ ∗ F σ0 σ0 with σ ∗ σ0. We
further know that σ0 ∗ F τ ′ τ ′. Thus, τ ⇔ σ with
common reduct τ ′ and we are done.

Both chains are of form (2): Suppose F τ ∗ F τ ′ τ ′′ and
F σ ∗ F σ′ σ′′, where the last step in each of those
chains is the first use of RED_AXIOM in the chain to τ0. Let
lhs1 and rhs1 be the types mentioned in the equation used
to reduce F τ ′; accordingly, there exists a substitution θ such
that θ(lhs1) = τ ′ and θ(rhs1) = τ ′′. Define lhs2 and rhs2
similarly, using the same θ. (The use of the same θ is possible by
arbitrarily renaming variables in lhs2 and rhs2 to avoid overlap
with lhs1 and rhs1.)
By the injectivity check, we now have two possibilities:
U(rhs1, rhs2) returns Nothing: Property 19 tells us apart(rhs1, rhs2).

Lemma 20 then tells us apart(θ(rhs1), θ(rhs2)). We in-
voke Assumption 21 to tell us ¬(θ(rhs1) ⇔ θ(rhs2)).
But that is a contradiction, because θ(rhs1) = τ ′′ and
θ(rhs2) = σ′′ and we assume τ ′′ ⇔ σ′′. Thus we are
done with this case.

U(rhs1, rhs2) returns Just θ′: We now have three possibili-
ties:
θ′(lhs1 i) = θ′(lhs2 i): Let rhs1

∗ and rhs2
∗ be the flat-

tened versions (as in Definition 17) of rhs1 and rhs2,
respectively. Extend θ such that θ(rhs1

∗) = τ ′′ and
θ(rhs2

∗) = σ′′.
By flattening, rhs1

∗ and rhs2
∗ are type-family-free. We

can then use the Non-linear Patterns Lemma (Lemma 16)
to get θ0 such that τ0 ∗ θ0(rhs1

∗) and τ0 ∗

θ0(rhs2
∗) (where τ0 is the common reduct of τ ′′ and

σ′′). (We’re using the fact that ftv(rhs1)∩ftv(rhs2) = ∅
in assembling θ0 from Lemma 16.) By confluence,
we know there exists τ ′0 such that θ0(rhs1

∗) ∗

τ ′0 f
∗ θ0(rhs2

∗). By our assumption of termination,
we know that, eventually, our alternating applications of
Lemma 16 and confluence will peter out, and we will
have θ1(rhs1

∗) = θ1(rhs2
∗), such that, by an abuse of

notation, θ ∗ θ1. (We mean here that, for every map-
ping [a 7→ σ] ∈ θ, there exists a mapping [a 7→ σ′] ∈ θ1
such that σ ∗ σ′.)
We have established that θ1 is a unifier for rhs1

∗ and
rhs2

∗. Thus, we know that θ′ (the output from U∗) is
more general than θ1, as θ′ is a pre-unifier for rhs1

∗

and rhs2
∗ (Property 24). We have now established that

θ1(lhs1 i) = θ1(lhs2 i) from θ′(lhs1 i) = θ′(lhs2 i).
By the Rewrite Substitution Lemma (Lemma 14), we
know that θ(lhs1 i) ∗ θ1(lhs1 i) and θ(lhs2 i) ∗

θ1(lhs2 i), and thus that θ(lhs1 i) ⇔ θ(lhs2 i) as de-
sired.

F θ(lhs1) or F θ(lhs2) cannot reduce: This case cannot
happen, because we have assumed that these reduce.

Stolarek, Peyton Jones, Eisenberg: Injective Type Families for Haskell 13 2015/5/22

http://www.win.tue.nl/rtaloop/problems/79.html

We thus know that the injectivity check using U∗ is sound. But
is it sound for U? The output of U will, perhaps, have more map-
pings than the output for U∗, as U can look under injective type
family applications. Thus, U(τ1, τ2)’s output might not be a pre-
unifier of flatten(τ1) and flatten(τ2). But the extra mappings are
harmless: they must be between two joinable types. The details
of how to prove this more formally have eluded us thus far. Nev-
ertheless, we conjecture that, since U∗ is sound, U is too, given
the straightforward nature of the difference between the two algo-
rithms.

Conjecture 26 (Injective type families). If F τ ⇔ F σ and
F is i-injective according to Algorithm U , then τi ⇔ σi .

We are now in a position of finishing up our proof of consis-
tency.

Lemma 27 (Completeness of the rewrite relation). If ∅ ` γ : τ1 ∼
τ2, then τ1 ⇔ τ2.

Proof. By induction on the structure of ∅ ` γ : τ1 ∼ τ2. This
follows previous work (such as Breitner et al. (2014b)), with one
additional case:

Case CO_NTHTYFAM:
Γ ` γ : F τ ∼ F σ
F is i-injective

Γ ` nthi γ : τi ∼ σi

CO_NTHTYFAM

By the induction hypothesis and Conjecture 26.

Theorem 28 (Consistency). The global context is consistent.

Proof. Proved as Lemma 36 in Breitner et al. (2014b).

We have one final link to make in order to connect back with
Property 7. We want Lemma 25 to prove soundness, but that lemma
is stated in terms of ⇔, and the soundness property concerns ∼.
With the following lemma, we see that these relations are one and
the same, and so indeed we have addressed soundness as desired.

Lemma 29 (Soundness of the rewrite relation). If τ ⇔ σ (where
both τ and σ have no free variables), then there exists a γ such that
∅ ` γ : τ ∼ σ.

Proof. We prove that if τ τ0 (for closed τ), then γ exists such
that ∅ ` γ : τ ∼ τ0. We are done by straightforward induction
on the structure of the proof that τ τ0. Note that all rules in the
rewrite relation correspond exactly to coercion forms.

D. Completeness of the injectivity check
Property (Completeness (Property 8)). Suppose a type family F
has equations such that for all right-hand sides τ :

• τ is type-family-free,
• τ has no repeated use of a variable, and
• τ is not a bare variable.

If F is n-injective, then the injectivity check will conclude that F is
n-injective.

As described in Section 4.4, the conditions significantly reduce
the complexity of the injectivity check. Under these conditions, the
injectivity check is equivalent to the following:

Definition 30 (Restricted injectivity check). Assuming the condi-
tions stated in Property 8, a type family F is n-injective iff, for
every pair of equations F σi = τi and F σj = τj (including i =
j):

1. τi and τj do not unify, or
2. τi and τj unify with substitution θ, and

(a) θ(σi n) = θ(σj n), or
(b) F θ(σi) cannot reduce via equation i, or
(c) F θ(σj) cannot reduce via equation j.

The completeness property is then directly implied by the fol-
lowing lemma:

Lemma 31 (Completeness). Suppose F conforms to the conditions
in Property 8. If, for all τ and σ, F τ ∼ F σ implies τn ∼ σn ,
then the restricted injectivity check will succeed on F .

Proof. We prove the contrapositive, that when restricted injectivity
check fails on F , there exist τ0 and σ0 such that F τ0 ∼ F σ0 and
τ0 n 6∼ σ0 n .

For the restricted injectivity check to fail, there must be equa-
tions F σi = τi and F σj = τj such that τi and τj unify with
substitution θ. Further, it must be that θ(σi n) 6= θ(σj n) and that
both F θ(σi) and F θ(σj) can reduce by their respective equations.

Choose τ0 = θ(σi) and σ0 = θ(σj). We can see that F τ0
reduces to θ(τi) and F σ0 reduces to θ(τj). Because θ is a unifier
for τi and τj , we see that F τ0 = F σ0 and by reflexivity of ∼,
we know F τ0 ∼ F σ0.

We still must show θ(τ0 n) 6∼ θ(σ0 n). By our choice of τ0 and
σ0, we see that τ0 n = θ(σi n) and σ0 n = θ(σj n). We know from
our failed injectivity check, then, that τ0 n 6= σ0 n . Is it still possible
that τ0 n ∼ σ0 n though? We know that τ0 n and σ0 n are type-
family-free, because σi n and σj n are type-family-free (because
they are left-hand sides of a type family equation) and θ is type-
family-free (because it is a most-general unifier of two type-family-
free types). If τ0 n ∼ σ0 n were to hold, then, by completeness of
the rewrite relation (Lemma 27), that τ0 n ⇔ σ0 n . But the type
reduction relation coincides with equality when no type families
are involved. Thus, if τ0 n ∼ σ0 n , it must be that τ0 n = σ0 n ,
which is a contradiction.

Thus, we are done.

Stolarek, Peyton Jones, Eisenberg: Injective Type Families for Haskell 14 2015/5/22

	Injective Type Families for Haskell (extended version)
	Citation

	Introduction
	Why injective type families are needed
	Type families in Haskell
	The need for injectivity

	Injective type families
	Injectivity of type families
	Annotating a type family with injectivity information
	Associated types
	Why not infer injectivity?

	Verifying injectivity annotations
	Three awkward cases
	The injectivity check
	Unifying RHSs
	Type families on the RHS
	Dealing with infinity
	Closed type families

	Soundness
	Completeness

	Exploiting injectivity
	Improvement of wanted constraints
	Improvement via type family equations
	Decomposing given equalities
	Adding type family injectivity to FC
	Soundness of type family injectivity

	Partial type functions

	Injectivity in the presence of kind polymorphism
	Functional dependencies
	Advantages of type families
	Advantages of functional dependencies
	Summary

	Other related work
	Injectivity for the Utrecht Haskell Compiler
	Injectivity in other languages
	Injectivity of term-rewriting systems

	Conclusion
	Popularity of selected language extensions for type-level programming
	An excerpt of System FC
	Grammar
	The coercion formation rules

	Proof of type family injectivity soundness
	Completeness of the injectivity check

