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The first report of Lewis acid reagents in the intramolecular Rauhut-Currier 

reaction 

Andrew T. Krasley and William P. Malachowski* 

Chemistry Department, Bryn Mawr College, Bryn Mawr, PA 19010, USA 

wmalacho@brynmawr.edu 

Abstract: The first report of Lewis acid use in intramolecular Rauhut-Currier reactions is described. 

Titanium Lewis acids lead to rapid Rauhut-Currier reactions in the case of two classic substrates. More 

importantly, titanium and tin Lewis acids were the only successful reagent for a more complex substrate, 

thereby illustrating the potential for Lewis acid reagents to facilitate challenging intramolecular Rauhut-

Currier reactions that fail with traditional reagents. 

Graphical abstract: 
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Lewis acids are an extremely effective reagent for a variety of chemical transformations and the wealth 

of review articles1 describing their many applications serves to illustrate their value. Lewis acids provide 

a selection of benefits, two of the most important being permitting catalytic processes and influencing 

stereoselectivity in a reaction by controlling transition state geometry.  Included among the reactions 

that have been facilitated by Lewis acids is the Morita-Baylis-Hilman (MBH) reaction2. Surprisingly, the 

use of Lewis acids to facilitate the related vinylogous version of the MBH reaction, the Rauhut-Currier 

reaction3, has not, to the best of our knowledge, been reported. Two reports describe a similar process, 

but in both cases the final elimination step of the Rauhut-Currier was not achieved and the nucleophle 

was retained in the product.4 Furthermore, in 2008 Scheidt  et al. reported5 the use of scandium triflate 

with silyloxyallenes to afford products that were equivalent to an intermolecular Rauhut-Currier 

reaction, albeit by a different reaction mechanism. Given the rich history of Lewis acid reagents 

facilitating catalytic and enantioselective processes in other reactions, the demonstration of Lewis acid 

reagent use in the Rauhut-Currier reaction might create an opportunity for similar valuable applications. 

Herein we report the first example of Lewis acid reagents use in intramolecular Rauhut-Currier reactions.  

Studies commenced with a classic dienone intramolecular Rauhut-Currier substrate 1a, which was 

synthesized following literature procedures.6  Subjecting (E,E)-3,7-decadiene-2,9-dione 1a to traditional 

Rauhut-Currier reaction conditions, catalytic trimethylphosphine, provided the desired product in two 

hours similar to previous reports7 (Table 1, entry 1). Exposing 1a to stoichiometric titanium tetrachloride 



provided the same product in approximately 20 minutes (Table 1, entry 2).  Sub-stoichiometric amounts 

of the titanium reagent were permitted (Table 1, entry 3 and 4), but the reaction slowed and then was 

not possible below 0.25 equivalents (Table 1, entry 5).  Since 0.25 equivalents of titanium tetrachloride 

equates to one equivalent of chloride relative to dienone substrate 1a, we hypothesized that the 

chloride was being displaced upon Lewis acid binding to the dienone substrate and then performing a 

reversible conjugate addition (Scheme 1); much like the phosphine or amine catalysts typically used in 

Rauhut-Currier reactions.    

Table 1. Titanium and tin reagents for dienones. 

 

entry reagent equiv. additivesa T[°C] t[h] % conversionb 

1 PMe3 0.1 - r.t 2 100 

2 TiCl4 1.2 - r.t 0.33 100 

3 TiCl4 0.5 - r.t. 0.67 92 

4 TiCl4 0.25 - r.t. 18 87 

5 TiCl4 0.1 - r.t. 24 0 

6 TiCl4 0.1 LiCl r.t 1 0 

7 TiCl4 0.1 LiCl/12-crown-4 r.t 19 0 
8 TiCl4 0.26 (n-Bu)4NI (0.26 eq.) r.t 22 0 

9 TiCl4 1.2 t-BuOH r.t.-->  72 0 

10 TiCl4 1.2 PMe3 r.t.-->  48 0 

11 TiCl4 1.2 DABCO r.t. 20 0 

12 TiCl4 1.2 PhSH r.t.-->  48 0 

13 TiCl4 1.2 PhSNa r.t.-->  48 0 

14 TiBr4 0.5 - r.t. 43 100 

15 Ti(OiPr)4 2.3 - Δ 19 0 

16 Ti(OiPr)4 2.3 LiCl (3.5 eq.) Δ 19 0 

17 Ti(OiPr)3Cl 1.0 - Δ 13 0 

18 SnCl4 1.2 - r.t. 88 0 

19 SnBr4 0.5 - r.t. 91 0 

20 AlCl3 1.2 - r.t. 19 0 

21 BCl3 1.2 - r.t. 1.5 0 

22 BINOL-(PO4H) 1.2 - r.t.-->  48 0 
a 1.0 equiv. unless otherwise stated. b yield based on GCMS. 

 



 

 

Scheme 1. Proposed reaction mechanism. 

 
Attempts to combine the Lewis acid with various nucleophiles to make the process catalytic were 

unsuccessful.  Addition of a full equivalent of LiCl (Table 1, entry 6 and 7) or an iodide nucleophile (entry 

8) failed to afford any product.  In fact, the added chloride ion was actually found to suppress the 

reaction (vide infra). In situ generation of titanium tert-butoxide and liberation of chloride ion similarly 

failed to provide any product (entry 9).  The combination of traditional Rauhut-Currier nucleophiles and 

titanium tetrachloride also did not afford any product by GC analysis (entries 10-13). Titanium 

tetrabromide worked (entry 14), albeit more slowly, which might be expected in an aprotic solvent like 

CH2Cl2 where the bromide ion would be less nucleophilic than the chloride ion of titanium tetrachloride.  

Less electrophilic titanium tetraisopropoxide did not work with or without additional LiCl (entry 15 and 

16). Incorporation of the nucleophilic chloride into the titanium complex with Ti(OiPr)3Cl also failed to 

afford product (entry 17). The strength of the Lewis acid was critical based on the failure of tin 

tetrahalides (entry 18 and 19). However, the stronger Lewis acids, aluminum and boron (entry 20 and 

21), afforded a complex mixture of products, despite evidence for formation of the halide conjugate 

addition intermediate during GC analysis of the reaction. The failure of aluminum and boron also 

suggests that the valence of the Lewis acid may also be critical to the success of the intramolecular 

Rauhut-Currier reaction. Finally, a chiral phosphoric acid, which has been used to promote other 

conjugate addition reactions,8 also failed to afford any product (entry 22).  In summary, the reaction was 

quite efficient with at least 0.25 equivalent of titanium tetrahalide. The electrophilicity and valence of 

the Lewis acid is critical and the addition of other nucleophiles did not stimulate the reaction.  

Exploring the substrate scope of the process with two other classic intramolecular Rauhut-Currier 

substrates, 35b and 49, demonstrated only modest range (Table 2). Cyclopentene formation was the 

most facile (Table 2, entry 1), but was limited to the more electrophilic diketone substrates; the 

introduction of even one ester prevented any reaction (Table 2, entry 2).  With cyclohexenes, only the 

non-enolizable diphenyl derivative was successful (Table 2, entry 4); presumably the ability of the 



dimethyl example to undergo enolization hinders the Rauhut-Currier process. Attempted cycloheptene 

formation also failed with both enolizable (dimethyl) and non-enolizable (diphenyl) substrates (Table 2, 

entries 5 and 6). Finally, an intermolecular Rauhut-Currier reaction with methyl vinyl ketone and tin 

tetrachloride lead only to products of polymerization (not shown); not surprising given the prevalence of 

cationic polymerization practices10. 

 

Table 2. Dienones subjected to Lewis acid Rauhut-Currier. 

 

entry compd n R1 R2 temp. t[h] % isolated yd. 

1 1a 1 Me Me r.t. 0.33 80% 

2 1b 1 Me OMe Δ 24 0% 

3 3a 2 Me Me Δ 24 0% 

4a 3b 2 Ph Ph r.t 3.33  78% 

5 4a 3 Me Me Δ 24 0% 

6 4b 3 Ph Ph Δ 24 0% 
a t-BuOK added after 20 minutes and reacted for 3 hours to eliminate Cl. 

In pursuit of complex natural product-like intermediates for the generation of potentially bioactive 

compounds, we also explored the use of Lewis acids for Rauhut-Currier formation on a more complex 

substrate, 5 (see Supporting Information for synthesis of 5). As shown in Table 3, a wide array of classic 

Rauhut-Currier reaction conditions failed to afford any product (entries 1-10). Presumably the reaction 

was hindered by sterics and the presence of a less electrophilic vinylogous ester for the second 

conjugated alkene.  

Table 3. Intramolecular Rauhut-Currier reaction with complex substrate. 

 

entry reagent additives solvent T[°C] t [h] 
% isolated 

yd. 



1 PMe3 (0.2 eq) - CH2Cl2 0 – r.t. 24 0% 

2 PMe3 (1.2 eq) t-BuOH CH2Cl2 0 – r.t. 24 0% 

3 PhSH (1.0 eq) - CH2Cl2 0 – r.t. 24 0% 

4 PhSH  (1.0 eq) NaH (1.5 eq) CH2Cl2 0 – r.t. 24 0%a 

5 PhSNa (0.2 eq) Sc(OTf)3 THF Δ 24 0% 

6 BnNH2 (1.5 eq) Et3N (excess) Toluene Δ 24 0% 

7 BnNH2 (20 eq) BF3•Et2O THF r.t. 24 0% 

8 MeNH2 (20 eq) Et3N (30 eq) THF r.t. 24 0% 

9 MeNH2 (20 eq) Sc(OTf)3 THF r.t. 24 0% 

10 BocCysOMe (1.0 eq) t-BuOK (6.0 eq) ACN/H2O r.t. 24 0% 

11 TiCl4 (1.2eq) - CH2Cl2 r.t. 
30 
sec 

90% 

12 SnCl4 (1.2eq) - CH2Cl2 r.t. 0.5 85% 

13 SnCl4 (1.2eq) LiCl (2.4 eq) CH2Cl2 r.t. 1 53% 

14 AlCl3 (1.2 eq) - CH2Cl2 r.t. 1 0% 

15 BCl3 (1.2 eq) - CH2Cl2 r.t. 10 0% 

16 ZnCl2 (1.2eq) - CH2Cl2 r.t. 24 30%b 

17 ZnI2 (1.2eq) - CH2Cl2 r.t. 24 0% 

18 CuCl2 (1.2eq) - CH2Cl2 r.t. 24 0% 

a 1,4 addition product to acyclic enone observed. byield based on GCMS 

Nevertheless, subjecting the same complex substrate to Lewis acid conditions afforded the product in 

exceptionally rapid fashion and high yield. Consistent with the previous studies of the classic Rauhut-

Currier substrate, 1a, the highest efficiency was seen with the most electrophilic tetravalent Lewis acid, 

TiCl4 (Table 3, entry 11). Surprisingly, and in contrast to studies with 1a, tin tetrachloride also worked 

quite well (Table 3, entry 12). Interestingly, the addition of LiCl with SnCl4 actually suppressed the 

Rauhut-Currier reaction (Table 3, entry 13). Since the presumed mechanism involves halide conjugate 

addition to one enone, extra chloride ion might be expected to facilitate the process. Instead, it appears 

that the extra halide actually suppresses Lewis acid binding to the enone oxygen atom. This must be a 

critical first step that is adversely impacted by the presence of excess halide. As before, the trivalent 



aluminum and boron reagents provided complex mixtures (entries 14 and 15), while the less 

electrophilic zinc and copper dihalides afforded little or no product (Table 3, entries 16-18). 

In conclusion, the first study of Lewis acid reagent use in the intramolecular Rauhut-Currier reaction is 
reported. Although not broadly applicable, the reaction is exceptionally efficient with particular 
substrates and is the only successful choice in the more complex example that was tested. Given the 
range of additional benefits of Lewis acids illustrated in the variety of reactions chemists have conducted 
with these reagents, the demonstration of Lewis acid applicability to intramolecular Rauhut-Currier 
reactions should be a benefit. In addition, this study illustrates that substrates that are resistant to 
traditional Rauhut-Currier reagents might be feasible with Lewis acid reagents.   
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