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An overabundance of equality:
Implementing kind equalities into Haskell

Richard A. Eisenberg
University of Pennsylvania

eir@cis.upenn.edu

Abstract
Haskell, as embodied by version 7.10.1 of the Glasgow Haskell
Compiler (GHC), supports reasoning about equality among types,
via generalized algebraic datatypes (GADTs) and type families.
However, these features are not available among the kinds that clas-
sify the types. Motivated by a concrete example of how kind equali-
ties can help programmers today, this paper presents the challenges
and solutions encountered in integrating kind equalities into GHC,
an industrial-strength compiler. The challenges addressed here all
surround the many notions of type equality that exist in GHC to-
day, and in particular around GHC’s role mechanism. These many
different relations on types complicate the theory considerably

An update of GHC supporting reasoning about kind equalities
is a key part of this work.

1. Introduction
Today’s Haskell1 has an intriguing limitation.

The following declaration, straight from the standard library
module Data.Type.Equality , defines the type of equality witnesses
for two types of any kind k:

data (a :: k) :∼: (b :: k) where
Refl :: ∀ (a :: k). a :∼: a

Pattern matching on this generalized algebraic datatype (GADT) [10,
19] allows GHC to discover the equality between two types:

castWith :: ∀ (a :: ?) (b :: ?). (a :∼: b)→ a→ b
castWith Refl x = x

In the definition of castWith, we pattern-match on Refl . This
exposes the fact that a and b must, in fact, be the same. Then, GHC
happily uses x of type a in a context expecting something of type
b. All is good.

However, the following, very similar definition, is rejected:

data (a :: k1) :≈: (b :: k2) where
HRefl :: ∀ (a :: k). a :≈: a

1 Throughout this paper, I use “Haskell” to describe the language imple-
mented by the Glasgow Haskell Compiler (GHC) version 7.10.1.

[Copyright notice will appear here once ’preprint’ option is removed.]

The only difference between ( :∼: ) and ( :≈: ) is in the kinds
of the type arguments. Homogeneous equality ( :∼: ) takes two
parameters, a and b, both of some kind k . Heterogeneous equality
( :≈: ), on the other hand, takes its parameters of different kinds, k1

and k2. Thus, pattern-matching on HRefl should yield both that the
kinds k1 and k2 are equal and that the types a and b are equal. Such
a definition is useful for enabling Haskell to operate in a distributed,
cloud-based setting; see Section 2.1 for the details, as well as other
motivation.

The restriction above exists because GHC reasons about only
type equality, never kind equality. When a programmer uses Refl
at type a :∼: b in an expression, GHC must create a proof that a in-
deed equals b. Conversely, when matching on Refl , GHC unpacks
this equality proof and is able to use it when type-checking the body
of the pattern match – this is how castWith is able to type-check, by
making use of the proof that a equals b. However, GHC currently
has no notion of kind equalities, so there is no equivalent proof that
k1 equals k2 to pack and unpack. Relatedly, today’s Haskell does
not support kind families – functions that take and return kinds –
nor promoting GADTs to the kind level [20].

The solution to all of these problems is simple to state: merge
the concepts of type and kind. If types and kinds are the same,
then we surely have kind equalities. We can go one step further,
by adding the ? :: ? axiom and avoiding an infinite hierarchy of
sorts; see Section 9.1 for discussion about this design choice.

The solution introduced above is described in detail in previ-
ous work [18], which develops an enhanced internal language and
proves it type safe. The current work goes beyond in that it deals
in pragmatics. GHC/Haskell is a large, complex beast: it supports
unlifted types (Section 4), roles (Sections 5-6), open and closed
type families (Section 7), among many other features. (GHC also
requires type inference, which is beyond the scope of this work, but
see the work of Gundry [7].)

In this paper, I describe how the internal language from that
previous work fits into GHC, resolving the thorny issues that arose
in the process. A common thread among these pain points is that
they all deal with different notions of type equality. As GHC has
evolved, it has required several distinct notions of equality among
types, and it is here that the challenge of implementing kind equal-
ity comes to a head.

I offer the following contributions:

• Sections 4 through 7 present the primary challenges in extend-
ing GHC’s type system with kind equalities, along with their
solutions. These challenges appear to arise from the interaction
between type system features, and are not merely due to GHC’s
implementation particulars.

• In order to overcome those challenges, it has been necessary
to augment GHC’s internal language, System FC. Section 3 in-
troduces an updated version of the language, and the relevant
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lemmas of the proof of type safety appear in the appendix. As
the type safety of Haskell rests on the type safety of FC, main-
taining an up-to-date description of FC is critical as Haskell
evolves.

• I have made available an implementation of kind equalities in
GHC.2 The implementation is capable of compiling all of the
examples in Weirich et al. [18], GHC itself, and the standard
libraries, and it fares admirably on the GHC testsuite. See also
Section 8 for implementation notes. I expect that much of the
system described in this paper will be available with the next
stable release of GHC.

2. Motivation
2.1 Cloud Haskell
Cloud Haskell [5] is an ongoing project, aiming to support writing
a Haskell program that can operate on several machines in parallel,
communicating over a network. Naturally, we would like to do so
in a type-safe manner. To do so, we need a way of communicating
types over a wire – a runtime type representation. Here is our
desired representation:

data TyCon (a :: k)
-- abstract; Int is represented by a TyCon Int

data TypeRep (a :: k) where
TyCon :: TyCon a→ TypeRep a
TyApp :: TypeRep a→ TypeRep b → TypeRep (a b)

For every new type declared, the compiler would supply an appro-
priate value of the TyCon datatype. The type representation library
would supply also the following function, which computes equality
over TyCons, returning the heterogeneous equality from the intro-
duction:

eqTyCon :: ∀ (a :: k1) (b :: k2).
TyCon a→ TyCon b → Maybe (a :≈: b)

It is critical that this function returns ( :≈: ), not ( :∼: ). This is
because TyCons exist at many different kinds. For example, Int is
at kind ?, and Maybe is at kind ? → ?. Thus, when comparing
two TyCon representations for equality, we want to learn whether
the types and the kinds are equal. If we used ( :∼: ) here, then
the eqTyCon could be used only when we know, from some other
source, that the kinds are equal.

We can now easily write an equality test over these type repre-
sentations:

eqT :: ∀ (a :: k1) (b :: k2).
TypeRep a→ TypeRep b → Maybe (a :≈: b)

eqT (TyCon t1) (TyCon t2) = eqTyCon t1 t2
eqT (TyApp a1 b1) (TyApp a2 b2)
| Just Refl ← eqT a1 a2

, Just Refl ← eqT b1 b2 = Just Refl
eqT = Nothing

Now that we have a type representation with computable equal-
ity, we can package that representation with a chunk of data, and so
form a dynamically typed package:

data Dyn where
Dyn :: ∀ (a :: ?). TypeRep a→ a→ Dyn

The a type variable there is an existential type variable. We
can think of this type as being part of the data payload of the
Dyn constructor; it is chosen at construction time and unpacked

2 https://github.com/goldfirere/ghc, on the nokinds branch. The
top-level README.md file has more information.

at pattern-match time. Because of the TypeRep a argument, we
can learn more about a after unpacking. (Without the TypeRep a
or some other type-level information about a, the unpacking code
must treat a as an unknown type and must be parametric in the
choice of type for a.)

Using Dyn, we can pack up arbitrary data along with its type,
and push that data across a network. The receiving program can
then make use of the data, without needing to subvert Haskell’s type
system. The type representation library must be trusted to recreate
the TypeRep on the far end of the wire, but the equality tests above
and other functions below can live outside the trusted code base.

Suppose we were to send an object with a function type, say
Bool → Int over the network. For the time being, let’s ignore the
complexities of actually serializing a function – there is a solution
to that problem3, but here we are concerned only with the types.
We would want to apply the received function to some argument.
What we want is this:

dynApply :: Dyn→ Dyn→ Maybe Dyn

The function dynApply applies its first argument to the second, as
long as the types line up. The definition of this function is fairly
straightforward:

dynApply :: Dyn→ Dyn→ Maybe Dyn
dynApply (Dyn (TyApp

(TyApp (TyCon tarrow) targ)
tres)

fun)
(Dyn targ’ arg)

| Just Refl ← eqTyCon tarrow (tyCon :: TyCon (→))
, Just Refl ← eqT targ targ’
= Just (Dyn tres (fun arg))

dynApply = Nothing

We first match against the expected type structure – the first Dyn
argument must be a function type. We then confirm that the TyCon
tarrow is indeed the representation for (→) (the construct tyCon ::
TyCon (→) retrieves the compiler-generated representation for
(→)) and that the actual argument type matches the expected ar-
gument type. If everything is good so far, we succeed, applying the
function in fun arg .

Heterogeneous equality is necessary throughout this example. It
first is necessary in the definition of eqT . In the TyApp case, we
compare a1 to a2. If we had only homogeneous equality, it would
be necessary that the types represented by a1 and a2 be of the same
kind. Yet, we can’t know this here! Even if the types represented by
TyApp a1 b1 and TyApp a2 b2 have the same kind, it is possible
that a1 and a2 would not. (For example, maybe the type represented
by a1 has kind ? → ? and the type represented by a2 has kind
Bool → ?.) With only homogeneous equality, we cannot even
write an equality function over this form of type representation. The
problem repeats itself in the definition of dynApply , when calling
eqTyCon tarrow TArrow . The call to eqT in dynApply , on the
other hand, could be homogeneous, as we would know at that point
that the types represented by targ and targ’ are both of kind ?.

In today’s Haskell, the lack of heterogeneous equality means
that dynApply must rely critically on unsafeCoerce. With hetero-
geneous equality, we can see that dynApply can remain safely out-
side the trusted code base.

2.2 Toward dependent types
A further motivation for adding kind equalities is that this seems
a necessary step on our way to having full dependent types. For
a concrete example of what dependent types in Haskell might

3 https://ghc.haskell.org/trac/ghc/wiki/StaticPointers
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a, b Type variables c Coercion variables
D data types N newtypes
K Data constructors F Type families
F Type family axioms N Newtype axioms

Figure 1. Metavariables for System FC

look like, see the work of Gundry [7], which explores the concept
thoroughly – including type inference. That work is, in turn, closely
based on Weirich et al. [18], from which the current paper has
sprung forth. With kind equalities, I conjecture that an arbitrary
dependently typed program can be converted to Haskell, in a type-
preserving manner, using the singletons construction. Monnier and
Haguenauer [9] write a proof that such a translation is possible,
and it seems that the version of Haskell proposed in this paper is
expressive enough to apply their work.

There is much motivation for dependent types in the folklore. In
particular, an interested reader is encouraged to consider Idris [1], a
language very similar to Haskell but with dependent types. Despite
Idris’s relative youth – dating back only to 2008 – it appears to be
gaining a strong following and has generated much buzz, in part
owing to its use of dependent types. Despite Idris’s success in this
area, it would also be nice to have dependent types in Haskell,
as GHC is much more mature, and is considered to be industrial
strength. Putting dependent types into Haskell would allow more
programmers access to dependent types’ power.

Kind equalities are necessary because dependent types require
having term-level constructs available in types. Currently, certain
constructor expressions in Haskell are indeed expressible in both
terms and types. For example, Just True is both a term and a type
in Haskell, thanks to GHC’s promotion mechanism [20]. However,
only a subset of constructors are promotable – constructors of
GADTs, for example, are not. The inability to promote a GADT
constructor is directly due to the lack of kind equalities. Just as
a term-level GADT constructor wraps up a type equality, a type-
level GADT constructor would have to wrap up a kind equality.
Accordingly, we need kind equalities to be able to promote GADTs,
and take this next step toward dependent types.

For further motivation around kind equalities, the reader is en-
couraged to see Section 2 of the work of Weirich et al. [18].

3. System FC
System FC [12] is GHC’s internal, typed language. It tracks the
kind equalities that concern us in this paper. Previous work [2, 18]
has a more detailed treatment of System FC than what appears here,
but readers are not expected to know more than this introduction to
understand the remainder of this paper.

System FC4 extends System F, adding coercions, type families,
and algebraic datatypes. See Figures 1-3 for a primer on the lan-
guage; I have highlighted the parts that are new to this paper. The
treatment of algebraic datatypes in System FC is standard. Coer-
cions are a form unique to FC, written with the metavariable γ, that
represent a proof that two types are equal. Coercions are typed by
a judgment of the form

Σ; Γ ` γ : τ1 ∼ρ τ2
where Σ is a signature containing definitions of type constants and
Γ is a typing context containing assumptions. The ρ subscript to the
equality operator ∼ is a role, as explained in Section 5. Figuring

4 This system has grown over the years and through a number of publica-
tions. Some of these extensions have given new names to the system, such
as F↑C and FC2. I refer to the evolving system under one name: FC.

H ::= TYPE | (→) | ’K | T Type constants
T ::= D |N Algebraic types
ε ::= E |NE Erasure modalities
τ, σ, κ ::= a |H | τ ψ | ∀ δ.τ | F [τ ] | τ . γ Types
ξ ::= a |H | ξ1 ξ2 | ξ c | ξ . c Type patterns
δ ::= a:εκ | c:φ Binders
ψ ::= τ | γ Arguments
γ, η ::= 〈τ〉 | sym γ | γ1 # γ2 | γ1 γ2(η) Coercions

| γ1 (γ2, γ3)χ | ∀εη(a1, a2, c).γ | ∀χ(c1, c2).γ
| kind γ | kapp γ | kapp1 γ | kapp2 γ
| c | F [i ][ψ] | N [τ ] | sub γ | γ . η | . . .

φ ::= τ1 ∼ρ τ2 Propositions
χ ::= 〈η1, η2〉ρ Higher-order cos.
ρ ::= N | R Roles
Φ ::= [∆].F [ξ] ∼N σ T.F. equations
Ψ ::= Φ T.F. axiom types
Σ ::= ∅ | Σ, sbnd Signatures
sbnd ::= T : ∀a:Eρκ. ? |K : τ | F : [∆].κ Sig. bindings

| F : Ψ | N : [a:κ].N a ∼κR σ
Γ,∆ ::= ∅ | Γ, δ Contexts
t , p ::= . . . Erased types / args.

The type τ1 → τ2 is syntactic sugar for (→) τ1 τ2.

Figure 2. Grammar for System FC. TYPE is discussed in Sec-
tion 4.3; the erasure modality in Section 4.5; the new coercion
forms in Section 6.3.2; erased types and type patterns in Sec-
tion 7.2; and the new form χ in Section 3.1.

Σ ` H ⇐ ρ “Roles ρ are appropriate for H .”
Σ; Γ ` ctx Context validity
Σ; Γ ` τ : κ Type kinding
Σ; Γ `tel ψ ⇐ ∆ Telescope validity
Σ; Γ ` e : τ Expression typing
Σ ` no conflict(Ψ,Φ, t , i) “Equation Φ in axiom Ψ at erased

types t is not prevented from red-
ucing by eqns. numbered i or less.”

Figure 3. Typing judgment schemas for System FC

out the right roles in judgment rules is the primary occupation of
Sections 5–6; I will often omit these subscripts until then. The
metavariable φ refers to equality propositions, such as τ1 ∼ρ τ2.

Coercions can be formed in a multitude of ways. Figure 4
contains selected rules from the typing judgment and is included to
help the reader understand how coercions combine. We will focus
only on the highlighted parts in this paper.

Coercions are used in casts, such as the expression form e . γ,
with the following typing rule:

Σ; Γ ` e : τ1
Σ; Γ ` γ : τ1 ∼ τ2

Σ; Γ ` e . γ : τ2
TM CAST (VER. I)

We see here that we can take an expression e of type τ1 and treat
it as an expression of type τ2 by inserting an explicit cast using the
cast operator ..

Coercions arise from two sources: axioms in the environment
and local assumptions. A type family instance compiles to an axiom
F . For example, the declaration

type instance F Int = Bool

yields an axiom axF : F[Int ] ∼N Bool , which can be made into a
coercion proving F[Int ] ∼N Bool . We see here that type families
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Σ; Γ ` τ : κ

Σ; Γ ` 〈τ〉 : τ ∼N τ
CO REFL

Σ; Γ ` γ : τ2 ∼ρ τ1
Σ; Γ ` sym γ : τ1 ∼ρ τ2

CO SYM

Σ; Γ ` γ1 : τ1 ∼ρ τ2
Σ; Γ ` γ2 : τ2 ∼ρ τ3

Σ; Γ ` γ1 # γ2 : τ1 ∼ρ τ3
CO TRANS

Σ; Γ ` γ1 : τ1 ∼ρ τ2
Σ; Γ ` γ2 : σ1 ∼N σ2

Σ; Γ ` σ1 : κ1 Σ; Γ ` σ2 : κ2

Σ; Γ ` η : κ1 ∼ρ κ2

Σ; Γ ` τ1 σ1 : κ0 Σ; Γ ` τ2 σ2 : κ′0
Σ; Γ ` γ1 γ2(η) : τ1 σ1 ∼ρ τ2 σ2

CO APPTY

Σ; Γ ` η : κ1 ∼ρ κ2

Σ; Γ, a1:κ1, a2:κ2, c:a1 ∼N a2 ` γ : τ1 ∼ρ τ2
Σ; Γ ` ∀ a1:εκ1.τ1 : σ1 Σ; Γ ` ∀ a2:εκ2.τ2 : σ2

Σ; Γ ` ∀εη(a1, a2, c).γ : ∀ a1:εκ1.τ1 ∼ρ ∀ a2:εκ2.τ2
CO FORALLTY

Σ; Γ ` γ0 : τ1 ∼ρ τ2
Σ; Γ ` γ1 : φ1 Σ; Γ ` τ1 γ1 : κ′1
Σ; Γ ` γ2 : φ2 Σ; Γ ` τ2 γ2 : κ′2
Σ; Γ ` χ : φ1 ∼ρ φ2

Σ; Γ ` γ0 (γ1, γ2)χ : τ1 γ1 ∼ρ τ2 γ2
CO APPCO

Σ; Γ ` χ : φ1 ∼ρ φ2

Σ; Γ, c1:φ1, c2:φ2 ` γ : τ1 ∼ρ τ2
Σ; Γ ` ∀ c1:φ1.τ1 : σ1 Σ; Γ ` ∀ c2:φ2.τ2 : σ2

Σ; Γ ` ∀χ(c1, c2).γ : ∀ c1:φ1.τ1 ∼ρ ∀ c2:φ2.τ2
CO FORALLCO

Σ; Γ ` γ : τ1 ∼ρ τ2
Σ; Γ ` τ1 . η : κ′1

Σ; Γ ` γ . η : (τ1 . η) ∼ρ τ2
CO COHERENCE

Σ; Γ ` γ : τ1 σ1 ∼N τ2 σ2

Σ; Γ ` σ1 : κ1

Σ; Γ ` σ2 : κ2

Σ; Γ ` kapp γ : κ1 ∼N κ2
CO KAPPTY

Σ; Γ ` γ : τ1 γ1 ∼N τ2 γ2

Σ; Γ ` γ1 : σ1 ∼ρ σ2

Σ; Γ ` γ2 : σ3 ∼ρ σ4

Σ; Γ ` kapp1 γ : σ1 ∼N σ3
CO KAPPCO1

Σ; Γ ` γ : τ1 γ1 ∼N τ2 γ2

Σ; Γ ` γ1 : σ1 ∼ρ σ2

Σ; Γ ` γ2 : σ3 ∼ρ σ4

Σ; Γ ` kapp2 γ : σ2 ∼N σ4
CO KAPPCO2

c:φ ∈ Γ
Σ; Γ ` ctx

Σ; Γ ` c : φ
CO VAR

Σ; Γ ` γ : τ1 ∼ρ τ2
Σ; Γ ` τ1 : κ1 Σ; Γ ` τ2 : κ2

Σ; Γ ` kind γ : κ1 ∼R κ2
CO KIND

Σ; Γ ` γ : τ1 ∼N τ2

Σ; Γ ` sub γ : τ1 ∼R τ2
CO SUB

F : Ψ ∈ Σ Ψ[i ] = [∆].F [ξ] ∼N σ
F : [∆2].κ′ ∈ Σ Σ; Γ `tel ψ ⇐ ∆
eraseΣ;Γ(ξ[ψ/∆]) t Σ; Γ ` κ′[ξ[ψ/∆]/∆2] : ?
Σ ` no conflict(Ψ,Ψ[i ], t , i)

Σ; Γ ` F [i ][ψ] : F [ξ][ψ/∆] ∼N σ[ψ/∆]
CO TFAXIOM

N : [a:κ].N a ∼κ0
R σ ∈ Σ

Σ; Γ `tel τ ⇐ a:κ
Σ; Γ ` κ0[τ/a] : ?

Σ; Γ ` N [τ ] : N τ ∼R σ[τ/a]
CO NTAXIOM

Σ; Γ ` χ : φ1 ∼ρ φ2 Higher-order coercion typing

Σ; Γ ` η1 : σ1 ∼ρ σ3

Σ; Γ ` η2 : σ2 ∼ρ σ4

φ1 = σ1 ∼ρ2 σ2 φ2 = σ3 ∼ρ2 σ4

Σ; Γ ` 〈η1, η2〉ρ2 : φ1 ∼ρ φ2
HCO PAIR

Σ; Γ ` φ ok Proposition validity

Σ; Γ ` τ1 : κ1 Σ; Γ ` τ2 : κ2

Σ; Γ ` τ1 ∼ρ τ2 ok
PROP EQUALITY

Figure 4. Selected rules of coercion formation: Σ; Γ ` γ : φ, along with auxiliary judgments

in System FC are presented with a first-order syntax F[ ...]; this is
because type families must always appear saturated, both in Haskell
and in FC.

Newtypes also compile to axiomsN . The declaration

newtype Age = MkAge Int

compiles to axAge : Age ∼R Int. The MkAge constructor does not
appear in FC, as it is replaced by a cast using the axiom axAge. We
see here that an important difference between type family axiom
and newtype axioms is their roles: type family axioms have nominal
roles, whereas newtype axioms have representational roles. See
Section 5 for the details.

The use of GADTs lead to coercion assumptions. Consider the
type G :

data G a where
MkGBool :: G Bool

The MkGBool :: G Bool constructor is elaborated to have type
MkGBool ::∀ a. a ∼ Bool ⇒ G a. This transformation is critical
when analyzing case expressions, where we need the result types
of all constructors to be uniform in the datatype parameters. (In
other words, the result type of a constructor must be the datatype
name followed by a correctly sized list of unrepeated type vari-
ables, such as G a.) The type ∀ a. a ∼ Bool ⇒ G a is under-
stood to mean that MkGBool takes one parameter when elaborated
in System FC – a coercion between type a and Bool . Then, when
unpacking the constructor in a pattern match, this coercion is avail-
able within the body of the pattern match. For example, consider
this function:
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match :: ∀ a. G a→ a
match MkGBool = True

The function match elaborates as follows:

match :: ∀ a. G a→ a
match = Λ(a :: ?)→ λ(x :: G a)→ case x of

MkGBool (c :: a ∼ Bool)→ True . sym c

The cast is necessary because match must return a result of type a;
the sym operator we see there reverses the order of the coercion c ,
proving that Bool ∼ a, as desired.

3.1 Adding kind equalities
In Weirich et al. [18], my co-authors and I extended this ability of
casts to include casting on types, using the following rule:

Σ; Γ ` τ : κ1

Σ; Γ ` γ : κ1 ∼ κ2

Σ; Γ ` τ . γ : κ2
TY CAST (VER. I)

This rule behaves identically to the term-level rule, but one level up.
It is this ability to use an equality to change the kind of a type that
forms the essential difference between the System FC with kind
equalities and other versions of the language.

There are several knock-on effects of adding kind equalities,
summarized here:

• Promoting a GADT constructor leads to a type constant, written
’K , that takes a coercion argument. Accordingly, System FC
allows type application to either types τ σ or coercions τ γ. This
ability is more succinctly expressed in terms of ψ, which stands
for either a type or a coercion. Thus, the application form looks
like τ ψ.

• In two places in the grammar (seen in rules CO APPCO and
CO FORALLCO) it is necessary to prove an equality between
two propositions. I call this a higher-order coercion, and write
it χ. A higher-order coercion, composed of two ordinary coer-
cions, is a proof that the corresponding parts of two propositions
are equal. See Figure 4 for the typing rule.

During compilation, GHC takes a source Haskell program and
performs type inference on it, producing an annotated version of
the source program. At this stage, any programmer errors should
be caught and reported. In an error-free program, GHC then elab-
orates the annotated source program to a System FC program. The
elaborated program is then optionally type checked. A type error
in the System FC program would indicate a bug in the GHC im-
plementation, as all user errors should have already been detected
and reported. This redundancy is why type checking System FC is
optional. However, having a typed internal language has proved to
be a great asset to the GHC implementation, revealing a plenitude
of bugs during development. System FC is also amenable to formal
reasoning, allowing GHC/Haskell to rest on a solid type-theoretical
framework.

3.2 Heterogeneous equality
System FC with kind equalities also directly supports heteroge-
neous equality, which relates type of (potentially) different kinds.
To see how this arises, consider the Proxy type:

data Proxy (a :: k) = P

The type Proxy has kind ∀ k. k → ?. Now, consider that we have
some assumption c :: (k0 ∼ ?); that is, c is a proof that some kind
k0 is equal to ?. Reflexive coercions can be built out of any type;
the coercion 〈Proxy〉 proves Proxy ∼ Proxy . We can then build
the coercion 〈Proxy〉 c , proving Proxy k0 ∼ Proxy ?. But, we

can also see that Proxy k0 :: k0 → ? and Proxy ? :: ?→ ?. Thus,
〈Proxy〉 c is a heterogeneous coercion.

We thus allow coercions to relate types of different kinds. In the
judgment for well-formed propositions φ (Figure 4), we see that
the two types related may have different kinds.

Alongside heterogeneous equality, we would also like to say
that casts are irrelevant in types, a property termed coherence. We
want to be able to prove that, for any τ and γ: (τ . γ) ∼ τ . For
example, you should be able use a Haskell term of type Int . 〈?〉
where one of type Int is expected. This proof is embodied by a
coherence coercion form, such as this rule from Weirich et al. [18]:

Σ; Γ ` γ : τ1 ∼ τ2
Σ; Γ ` τ1 . γ′ : κ1

Σ; Γ ` γ . γ′ : (τ1 . γ′) ∼ τ2
CO COHERENCENOROLE

Although this rule is asymmetric, it can be used with the rule for
symmetry (sym) to get coercions on either side of the (∼).

3.3 Metatheory
The metatheory of System FC is well explored in the literature [2,
4, 12, 18]. In the appendix, I update several of the lemmas to work
with this new system. The two key lemmas needed to prove type
safety are lifting (for preservation) and consistency (for progress).

The lifting lemma says that types are preserved when a cast
stands in the way of a pattern match. It is significantly complicated
by kind equalities, as explored in Weirich et al. [18]. In this work,
it is updated with roles.

The consistency lemma says, essentially, that there is no coer-
cion (in an empty context) proving Int ∼ Bool . This is a key part
of proving progress.

Theorem (Preservation). Assume for all H ∈ dom(Σ), Σ `
H ⇐ ρ. If Σ; Γ ` e : τ and Σ ` e −→ e ′, then Σ; Γ ` e ′ : τ .

In System FC, a value is a lambda-abstraction or an expression
headed by a constructor.

Theorem (Progress). Assume for all H ∈ dom(Σ), Σ ` H ⇐ ρ.
IF Σ; Γ ` e : τ , then either Σ ` e −→ e ′ for some e ′, e is a value,
or e is a casted value.

The full definition of this version of System FC, with the state-
ment and proofs of the key lemmas, appears in the appendix.

4. Unlifted types and eliminating sub-kinding
4.1 Lifted types vs. unlifted types
Haskell, a non-strict language, differentiates between lifted types
and unlifted types. A lifted type is one that contains undefined –
the canonical⊥ term in Haskell – and an unlifted type does not. As
a consequence, evaluating expressions of unlifted types is always
strict.

Inhabitants of lifted types may be thunks – unevaluated portions
of a program. It is thus absolutely necessary for inhabitants of lifted
types to be stored via pointers. The runtime system can distinguish
between thunks and evaluated data before following the pointer. In-
habitants of unlifted types, however, can be represented without any
indirection. Because we know an unlifted type is always strict, we
can manipulate it directly. Haskell library-writers take advantage of
this fact by using unlifted types in performance-critical code.

The difference in representation between lifted and unlifted
types implies another distinguishing characteristic: it is not possible
to abstract over unlifted types. For example, the value 3# is of type
Int#, yet writing id 3# (where id ::∀ a. a→ a is the polymorphic
identity) is erroneous. Upon reflection, we see that this code must
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be wrong:5 what machine code could be generated for id? All lifted
types are represented by pointers, so it is straightforward to have an
implementation for id that works on any lifted type. Yet, unlifted
types can have any size and layout in memory; the machine code
for one function cannot deal with this variety.

Haskell uses its type system to prevent constructions like id 3#
by putting unlifted types into their own kind. The kind ? classi-
fies lifted types (such as Int, Bool , and Maybe Double). The
kind # classifies unlifted types (such as Int#, Word32#, and
Array# Float#). Accordingly, the full type of id should be writ-
ten ∀ (a :: ?). a→ a. When I say id 3#, I get a kind error:

Kind incompatibility when matching types :
a :: ?
Int# :: #

4.2 Sub-kinding
Despite the separation between ? and #, the following code type-
checks:

quux :: Bool → Int#
quux = undefined

This correct code begs the questions: What is the kind of (→)? And
what is the type of undefined? Both (→) and undefined are used
above in conjunction with unlifted types, seemingly successfully.

The answer to these questions is that today’s GHC has a sub-
kinding feature.6 When used fully applied, the (→) type has the
kind OpenKind → OpenKind → ?, where # and ? are sub-
kinds of OpenKind . Similarly, the type of undefined is properly
∀ (a :: OpenKind). a. The type Bool → Int# is thus well-kinded,
according to the sub-kinding relationship; and using undefined
at type Int# is also well-kinded. OpenKind also appears during
type inference when checking a lambda-term. As we’re checking
λx → ..., we don’t yet know whether x’s type will be unlifted or
lifted; GHC uses a unification variable of kind OpenKind to pull
this off.

This use of sub-kinding has worked moderately well, but it does
present a few oddities:

• A student of type systems can learn about the ? and # kinds,
and then be quite perplexed that undefined works at type Int#.
This question comes up with some regularity on the Haskell
mailing lists.7

• The function error :: ∀ (a :: OpenKind). String → a works
similarly to undefined , but prints a user-specified error message
when evaluated. It is sometimes convenient to define a function
such as flooError s = error ("Module Floo: " ++ s). Yet,
user definitions cannot tap into the sub-kinding magic, and so
flooError would be restricted to types of kind ?, making it less
useful than error .

• From an implementation standpoint, the presence of sub-kinds
complicates various parts of type inference, and has always
seemed to be a less-than-ideal solution.

As we examine adding kind equalities, sub-kinding becomes
even more of a thorn. For example, if we have an proof that k ∼ ?
(for some k), then what is k’s relationship to OpenKind? What is

5 I am discounting the possibility of specializing id to concrete unlifted
types here by duplicating its code, which GHC does not currently do.
6 In personal communication, Simon Peyton Jones has said sub-kinding is
not a feature, but a gross hack.
7 For example: https://www.haskell.org/pipermail/ghc-devs/
2015-February/008222.html

the proof for that relationship? Perhaps there is a story to be told
here, but it would be complex.

4.3 Eliminating sub-kinds via levity polymorphism
Instead, merging types with kinds facilitates getting rid of sub-
kinds altogether. The idea behind the new approach is to replace
sub-kinding with polymorphism, over a type variable of the new
kind Levity :

data Levity = Lifted | Unlifted

We then say that ? is just a synonym for TYPE ’Lifted and # is
a synonym for TYPE ’Unlifted , where TYPE is a new primitive
constant in the type system. All the uses of sub-kinding now are
easily expressed using polymorphism:

undefined :: ∀ (v :: Levity) (a :: TYPE v). a
error :: ∀ (v :: Levity) (a :: TYPE v). String → a
(→) :: ∀ (v1 :: Levity) (v2 :: Levity).

TYPE v1 → TYPE v2 → ?

As we can see, TYPE has type Levity → TYPE ’Lifted , recalling
that TYPE ’Lifted – that is, ? – is the classification of all kinds.
This strange typing relationship (where a constant is mentioned
in its own type) can be accommodated by a custom typing rule,
much like that for (→). It presents no trouble in the formalization
or proof.

4.4 Disallowing naughty levity polymorphism
I argue above that the following is nonsense:

id’ :: ∀ (v :: Levity) (a :: TYPE v). a→ a
id’ x = x

This id’ is a function that takes a levity-polymorphic variable. It is
thus not possible to generate concrete code for id’ , as there is no
way to know how id’ expects to receive its argument. Will it be
passed via a pointer or not? How big is the data? These questions
are impossible to answer for a levity-polymorphic argument. Let’s
call this a naughty use of levity polymorphism. Of course, not all
uses of levity polymorphism are naughty: undefined’s use of levity
polymorphism is not naughty at all.

We can discern between these cases with a simple rule: No
binder may have a levity-polymorphic type. This rule easily rules
out id’ , as the body of id’ would have to abstract over x :: a
where a :: TYPE v . Here, a is a levity-polymorphic type, and is
thus disallowed as the type of a binder. Because case expressions
also bind variables, this rule also effectively (and rightly) rules out
levity-polymorphic arguments to data constructors.

4.5 Type polymorphism
Let’s look again at the type of undefined :

undefined :: ∀ (v :: Levity) (a :: TYPE v). a

What, exactly, is the kind of that type? Is it even well-kinded?
According to the traditional kinding rule for ∀-types, it isn’t well-
kinded at all:

Σ; Γ, a:κ ` τ : ?

Σ; Γ ` ∀ a:κ.τ : ?
TY FORALLTY (VER. I)

The type variable a has kind TYPE v , where v might not be
’Lifted , and thus the traditional kinding rule fails. Clearly, we need
to be able to abstract over both lifted and unlifted types. We thus
use this rule:

Σ; Γ, a:κ ` τ : TYPE σ
Σ; Γ ` σ : Levity

Σ; Γ ` ∀ a:Eκ.τ : TYPE σ
TY FORALLTY E
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(Ignore the E notations for now.) This rule allows the body of the ∀
to have either a lifted type or an unlifted type and checks to make
sure that levity type σ does not escape its scope. The conclusion
might be somewhat surprising though, in that the kind of the ab-
straction is the same as the kind of the body. The motivation for
this decision is that the difference between ? and # is in the code
generator and at runtime. We certainly don’t want types – which
get erased – to have an impact at runtime. A type abstraction over
an unlifted type should surely remain unlifted.

Sadly, rule TY FORALLTY E excludes the type of undefined!
The solution proposed here is to add a new rule to handle exactly
this case:

Σ; Γ, a:κ ` τ : TYPE σ

Σ; Γ ` ∀ a:NEκ.τ : ?
TY FORALLTY NE

This rule concludes that the final kind is ?, not TYPE σ. The dif-
ference between the two rules – what keeps them from overlapping
– is the erasure modality, E (erased) or NE (not erased).8 If we
tweak the type of undefined to use non-erasing quantification and
become ∀ (v :: NE Levity) (a :: TYPE v). a, then it is well-kinded
at kind ?. (When a colon is unlabeled, we assume it is erasing.) The
intent is to use non-erasing quantification only for levity variables.9

Naturally, there is a runtime consequence of this design. Be-
cause levity abstraction always results in a type of kind ?, a levity-
polymorphic value must be lifted, and thus represented by a pointer
at runtime. In practice, this pointer will lead to a function that con-
sumes (and simply discards) a runtime value of type Levity . There
is thus a clear runtime effect of the design decision stated here. But
this does not cause any trouble in practice: any non-naughty use of
levity polymorphism is sure to diverge or throw an exception. This
design simply means it will take a computer a few more cycles fol-
lowing the indirection before the program aborts – it can’t cause a
slowdown in a loop.

4.6 Levity polymorphism in type inference
One of the signs that levity polymorphism is a good approach
is how well it works with the existing type inference scheme.
When GHC must reason about an as-yet-unknown type, it invents
unification variables, written α or β. When GHC learns, say, that
α should be Int, it just does an in-place mutable update of α := Int.

Suppose GHC is inferring the type of x in the expression λx →
swizzle x , where swizzle :: Int → Bool . When type-checking the
pattern x , GHC will invent a levity unification variable α :: Levity
and a type unification variable β :: TYPE α, where x :: β. In the
course of normal type inference, GHC will discover that β must be
the type that swizzle expects, Int. Before setting β := Int, however,
GHC does a kind check. (This kind check exists in today’s Haskell,
too.) It ensures that the type of β, TYPE α, matches the type of Int,
which is TYPE ’Lifted . In so doing, GHC discovers that it should
set α := ’Lifted . Naturally, GHC does another kind check, but that
straightforwardly confirms that the type of α is the same as the type
of ’Lifted : they are both Levity . Thus, GHC sets α := ’Lifted and
then β := Int. What is encouraging about all of this is that nothing
in this part of the type inference algorithm had to change to support
levity polymorphism.

4.7 Discussion
Using levity polymorphism to eliminate sub-kinding is a clear win
for GHC, in both theory and practice. While the TYPE constant is

8 As this modality is written on the binding colon, a careful reader may
expect erasure modality notations to appear in typing contexts as well. As
the erasure modality plays no role in a typing context, these are omitted.
9 In the extension of this language to include proper Π-types, the erasure
modality will play a larger role, becoming closer to the phase modality of
Gundry [7].

perhaps more complex than ? or #, avoiding sub-kinding simplifies
the type system by removing this extra relation among types. Im-
plementing the feature also removed several checks to make sure
the sub-kinding relation was being respected. This seems like a
solid way to deal with a type system that admits multiple kinds
of inhabited types, like ? and #. Furthermore, eliminating sub-
kinding is essentially forced by adding kind equalities, due to the
necessity of interaction between the features.

However, levity polymorphism would not, on its own, be imple-
mentable in today’s GHC without some pain. The problem is that
levity variables appear in kinds. Today’s GHC maintains an invari-
ant that all variables that appear in kinds have type �, the sort of
kinds. Indeed, decisions based on a variable’s kind happen quite
often, as today’s GHC treats kind variables somewhat differently
than type variables. (For example, type variables are printed in er-
ror messages; kind variables are not.) This is not an easy limitation
to work around. While I conjecture that the engineering challenges
could be overcome with effort, integrating levity polymorphism fits
more naturally in a system with a fully-merged grammar of types
and kinds.

5. Roles on kind equalities
A critical step in the integration of kind equalities into GHC is
figuring out a way to combine roles [2, 17] with kind equalities.
It turns out that this combination leads to subtle interactions and
forces some hard design choices.

5.1 An introduction to roles
Haskell supports the newtype construct, which allows the pro-
grammer to declare that one type shares a representation with an-
other:

newtype Age = MkAge Int

This declaration says that the runtime representation of Age is
identical to that of Int, although these types remain distinct to the
type checker. This construct is a boon to programmers, because
they can use newtypes to enforce abstraction in their code without
paying a runtime penalty.

The usefulness of newtypes has led Haskellers to demand the
ability to lift the free conversions through types. That is, we would
want to be able to convert Maybe [Age ] to Maybe [Int ] with no
runtime penalty. We will soon discover, however, that this is not
safe with all types. For example, consider these declarations:

type family F a where
F Int = Bool
F Age = Double

data X a = MkX (F a)

We clearly cannot convert an X Int to an X Age – the former stores
a Bool and the latter a Double! How can we tell the difference
between safe coercions, based on types like [ ] and Maybe, and
unsafe ones, based on types like X ?

To see the difference between Maybe and X , we must consider
the two different notions of equality in play. We want safe coer-
cions allowed between types that have the same representation at
runtime. Yet, a type family can distinguish among such types, as
we see above. Age and Int are equal in one sense, and distinct in
another. We must carefully track these two equality relations to get
this right.

To allow these free coercions safely, Weirich et al. [17] proposed
distinguishing the two equality relations at work here. Breitner et al.
[2] expanded upon that work and simplified it so that it was suitable
for implementation.
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5.2 Nominal and representational equality
The two equality relations at work are (∼N), called nominal equal-
ity; and (∼R), called representational equality. Nominal equality
is what Haskell programmers think of as type equality. Nominal
equality includes the reduction of type functions, such that F Int
∼N Bool . Representational equality, on the other hand, is strictly
coarser, relating also newtypes and their representations. Thus, Age
∼R Int while Age 6∼N Int. Breitner et al. [2] introduced the new
function10 coerce :: a ∼R b ⇒ a→ b, which allows programmers
to freely convert one type to a representationally equal type.

In System FC, discerning between the two equality relations
is done using an extra annotation on the ∼ operator that forms
equality propositions. Thus, the typing judgment for coercions is

Σ; Γ ` γ : τ1 ∼ρ τ2
where ρ is a metavariable for roles; ρ may concretely become N or
R.11 Accordingly, every coercion proves either a nominal equality
proposition or a representational one. The coercion former sub
converts a nominal equality proof to a representational one. That
is to say:

Σ; Γ ` γ : τ1 ∼N τ2

Σ; Γ ` sub γ : τ1 ∼R τ2
CO SUB

We must now return and refine the typing rule for casting ex-
pressions, first encountered in Section 3. In order to support cast-
ing from Age to Int, we see that the cast operator must work with
representational equality. We thus get this typing rule:

Σ; Γ ` e : τ1
Σ; Γ ` γ : τ1 ∼R τ2
Σ; Γ ` τ2 : TYPE σ

Σ; Γ ` e . γ : τ2
TM CAST

The differences from the previous version is the addition of the
R subscript to the equality proposition proved by γ, and that we
explicitly require the result type to be a valid target type of a cast.

With representational equality in hand, there is now a straight-
forward way to encode newtypes: every newtype declaration gives
rise to an axiom for representational equality. For example, the dec-
laration of Age in the introduction leads to the axiom axAge prov-
ing Age ∼R Int.

The addition of roles, unfortunately, complicates GHC’s type
system considerably, both internally, and in ways visible to pro-
grammers. This is a regrettable consequence of allowing both a
way to convert among representationally equal types while hav-
ing type-system features that can discern among representationally
equal types.

5.3 The role of kind coercions
Let’s now add roles to kind coercions. The first problem to tackle is
how to update the TY CAST rule, introduced in Section 3. Should
that equality proposition be nominal or representational? I have
chosen that it should be representational, yielding the following
rule:

Σ; Γ ` τ : κ1

Σ; Γ ` γ : κ1 ∼R κ2

Σ; Γ ` τ . γ : κ2
TY CAST

This decision is not without consequences. Arguments in favor of
each of the choices are below.

Casting by nominal coercions is much simpler. The only reason
we have representational equality at all is to glean runtime benefits

10 The operator (∼R) is actually spelled Coercible in GHC programs.
11 Here, and throughout most of this paper, I ignore the possibility of
phantom coercions, as introduced in Breitner et al. [2].

of having free conversions between newtypes and their represen-
tation types. Absent performance concerns, there would be little
benefit of the representational equality relation. Yet, when reason-
ing about types, a performance argument falls flat – there is no need
to make “free” conversions among types, as these conversions are
never run at all. It would thus seem unnecessary to have represen-
tational equalities among kinds. Under this idea, a newtype decla-
ration would be treated just as a data declaration would be when
promoting data constructors to types. Even though the newtype
constructor used at the term level is absent from a System FC pro-
gram, that same constructor would be preserved when used at the
type level.

Furthermore, casting types by nominal coercions avoids the
thorny issues we explore below, caused by the choice of using
representational equality in kind casts. The nominal equality choice
would then lead to a significantly simpler system.

Casting by representational coercions is much more expressive.
The chief argument in favor of casting by representational equali-
ties is uniformity, echoing the decision to cast by representational
equalities in terms. The work of integrating kind equalities into
GHC is a key step along the way to dependent types, with a Π-
quantifier, in Haskell. (See Section 2.2 for some more motivation.)
As discussed in Gundry [7], having proper dependent types requires
identifying a subset of the expression language that can also appear
in types.

At a minimum, all datatypes and newtypes should be in this
subset. Because newtype constructors elaborate to representational
coercions, in order to freely promote expressions using newtypes,
representational coercions must be allowed to cast the kinds of
types.12

Using representational coercions in kind casts also opens the
door to future expansions of the representational equality concept.
One way to view representational equality is that it is a type equal-
ity that is never inferred – it must always be annotated. The pro-
grammer does this by writing a newtype constructor, or by calling
coerce. One can imagine more ways to let types equal one another,
requiring that the programmer specifies when to make the conver-
sion. For example, GHC’s Constraint kind classifies (lifted) con-
straint types. As such, it is appropriately seen as indistinguishable
from ? in today’s System FC. However, Constraint and ? are dif-
ferent kinds to a Haskell programmer. This situation – when two
kinds are distinct in a Haskell program but should be seen as the
same under the hood – is exactly the situation with newtypes. Per-
haps a future application of the ability to use representational coer-
cions in kind casts is to let Constraint and ? be representationally
equal. This ability could be used to allow Haskell programs to con-
vert regular values into dictionaries and back, a trick that currently
requires unsafeCoerce.13

In the end, I decided to use representational coercions in kind
casts, chiefly in order to support future dependent types work.

6. Extracting kind coercions from type coercions
Suppose we have γ : τ1 ∼ρ τ2, where τ1 : κ1 and τ2 : κ2. By
definition, this means that γ shows that τ1 and τ2 are equal at role
ρ. But, what does it say about κ1 and κ2? The system described in

12 Promoted newtypes can be used in today’s Haskell by considering a
newtype constructor akin to a data constructor. Such a treatment would
fail, however, if GHC had to automatically promote certain expressions,
which is necessary if it is to support Π-types. Today’s promotion is done
entirely by hand in the source Haskell program – GHC never converts a
term-level expression into a type.
13 For example, see Edward Kmett’s reflection package, which makes use
of this trick.
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Weirich et al. [18] has the following rule:

Σ; Γ ` γ : τ1 ∼ τ2
Σ; Γ ` τ1 : κ1 Σ; Γ ` τ2 : κ2

Σ; Γ ` kind γ : κ1 ∼ κ2
CO KINDNOROLES

We must now decide how to decorate this rule with roles. My
decision, based on experience working with and implementing this
system, is to have the conclusion have a representational role,
regardless of the premise’s role:

Σ; Γ ` γ : τ1 ∼ρ τ2
Σ; Γ ` τ1 : κ1 Σ; Γ ` τ2 : κ2

Σ; Γ ` kind γ : κ1 ∼R κ2
CO KIND

There appears to be, here, a free choice among several options.
Though I have worked out the details only for the system with the
rule immediately above, I conjecture that a similar system would
support having the conclusion’s role match the premise’s role, and
yet a different system would support removing this rule entirely. I
consider these different options below.

6.1 Alternative: a nominal type equality implies a nominal
kind equality

Here, we consider an alternate to CO KIND above:

Σ; Γ ` γ : τ1 ∼ρ τ2
Σ; Γ ` τ1 : κ1 Σ; Γ ` τ2 : κ2

Σ; Γ ` kind γ : κ1 ∼ρ κ2
CO KINDALT

At first blush, this seems like the right option. If we know that two
types are nominally equal – that is, the two types are considered
wholly interchangeable in source Haskell – we would expect their
kinds to have the same property. However, this choice, along with
the choice to use representational coercions in casts, leads to a
fundamentally fragile type inference algorithm.

The central problem is that, with CO KINDALT, nominal equal-
ity is not coherent. Recall that coherence is the property that, for all
τ and γ, τ should be equal to τ .γ. If a type equality relation is co-
herent, then the exact placement of casts in types is irrelevant. Yet,
with CO KINDALT, the type τ . γ might not be nominally equal
to τ – the kinds of τ . γ and τ might be only representationally
equal, not nominally equal. If we could somehow derive a nominal
equality between τ and τ . γ for any τ and γ, we could promote
a representational equality proof to a nominal one, thoroughly de-
feating the whole roles mechanism.

Can we live without coherence? No. Lack of coherence means
that the placement of coercions in types is now relevant. Because
the placement of coercions in types is determined during type in-
ference – and often influenced by tiny changes in a user’s Haskell
source – incoherence inevitably leads to a fragile type inference
algorithm. Another way of viewing the problem is to consider a
Haskell program as a compressed form of a System FC program;
type inference and elaboration expands the compressed form. With-
out coherence, this expansion is non-deterministic: multiple, un-
equal FC types may be the expansion of one Haskell type. We thus
must reject the CO KINDALT rule.

6.2 Alternative: a nominal type equality implies nothing
about the types’ kinds

Though the details have not been worked out, my co-authors and I
conjecture in Weirich et al. [18] that the kind γ coercion form is
optional – it can be left out without ill effect. I see no reason that
this fact would be changed in the system with roles. So, we must
consider this possibility.

In the GHC implementation, the ability to extract a kind co-
ercion from a type coercion is useful. This comes into play most
often when it is necessary to form a homogeneous coercion. A key

example is the implementation of type normalization. Given a type,
possibly containing type family applications, we would like to pro-
duce a type without any reducible type family applications and
the coercion that witnesses the reduction. Concretely, if we have
type instance F Int = Bool , given F Int, we want to produce
Bool and γ : F Int ∼N Bool . The coercion produced must be ho-
mogeneous, as only homogeneous equality is substitutive – that is,
we must be able to replace the normalized type in for the original.
Thus, during normalization, if τ1 : κ1 normalizes to τ2 : κ2 with
γ : τ1 ∼N τ2, we can use τ2 . sym (kind γ) : κ1 to substitute for
τ1.

Despite the convenience of using kind here, I believe it is
strictly unnecessary. It seems quite possible to track changes of
a type’s kind during normalization (and other, similar algorithms
in GHC) and then to homogenize using a separately-formed kind
coercion. However, I have also been unable to find a simplification
made possible by the omission of kind, so it seems better to have
kind than not.

6.3 Final decision: a nominal type equality implies a
representational kind equality

I have thus adopted the following rule for kind extraction and
coherence:

Σ; Γ ` γ : τ1 ∼ρ τ2
Σ; Γ ` τ1 : κ1 Σ; Γ ` τ2 : κ2

Σ; Γ ` kind γ : κ1 ∼R κ2
CO KIND

This choice of rule leads to a straightforward addition of roles to
the coherence rule:

Σ; Γ ` γ : τ1 ∼ρ τ2
Σ; Γ ` τ1 . η : κ′1

Σ; Γ ` γ . η : (τ1 . η) ∼ρ τ2
CO COHERENCE

Regardless of the role of γ, kind γ is always a representational
equality. This choice is not without its drawbacks, which I explore
below. However, these drawbacks have, in practice, been more
easily overcome than the drawbacks of other alternatives.

6.3.1 Nominal equality is more inclusive than it “should” be.
Suppose γ : Int ∼R Age, built from Age’s newtype axiom. Then,
the coercion 〈3〉 . γ proves (3 . γ) ∼N 3, a nominal equality. The
fact that this proposition is provable is puzzling, because it involves
a newtype axiom. Recall that nominal equality is source Haskell
equality – it is intended that type inference can, without assistance,
discover any nominal equality that can exist between two types.
Yet, the whole point of newtypes is that type inference should not
equate a newtype and its underlying representation, unless directed
to do so by the programmer. Thus, our 〈3〉 . γ coercion is suspect.

However, we can note a key fact here: the kinds of 3 . γ and
3 are different; the coercion 〈3〉 . γ is heterogeneous. Thus, for a
Haskell programmer to notice the fact that 3.γ and 3 are nominally
equal, there must be two nominally equal types, one of which
expects a parameter of kind Age and the other of which expects
a parameter of kind Int. This does not happen, and so we are saved.
Understanding how this is so is best by way of a few examples.

Consider a basic Proxy type, with an explicit kind parameter:14

data Proxy (k :: ?) (a :: k) = P

Both parameters k and a will be inferred to have representational
roles. This means that we can prove Proxy k1 a1 is representation-
ally equal to Proxy k2 a2 whenever k1 ∼R k2 and a1 ∼R a2.

14 This syntax – with explicit kinds – is actually legal in my implementation,
as a natural consequence of combining types with kinds.
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Are Proxy Age (MkAge 3) and Proxy Int 3 representationally
equal? Yes, as they should be. We can straightforwardly prove
that Age ∼R Int and use coherence to show that 3.γ (which is the
desugared form of MkAge 3) is representationally equal to 3.

Are Proxy Age (MkAge 3) and Proxy Int 3 nominally equal?
No, because Age and Int are not nominally equal. The coherence
rule allows us to prove that 3 . γ and 3 are nominally equal, but the
overall types are still not nominally equal.

There is still a small lingering problem here. Even in today’s
Haskell, users can write role annotations which alter the default
roles GHC infers for types [2]. For example, a programmer might
write the following annotation for Proxy :

type role Proxy representational nominal

This annotation means that, to prove that Proxy k1 a1 and
Proxy k2 a2 are representationally equal, k1 can be represen-
tationally equal to k2, but a1 and a2 are required to be nomi-
nally equal. With this annotation in place, we can still prove that
Proxy Age (MkAge 3) is representationally equal to Proxy Int 3.
This fact is slightly dissatisfying, because it means that GHC will
“look through” the MkAge constructor. This fact may surprise
some programmers, but the issue can come up only when a user
has used a role annotation, and the problem does not threaten type
safety. Furthermore, Age and Int are considered representationally
equal only when the MkAge constructor is in scope, so the problem
described here does not result in a loss of abstraction.

6.3.2 Type applications are hard to decompose.
Consider a type inference problem where we must prove the equal-
ity β1 β2 ∼N Proxy ? Int, where β1 :: α → ? and β2 :: α,
and Greek letters denote unification variables. The decomposition
seems straightforward; we should reduce to β1 ∼N Proxy ? and
β2 ∼N Int. We cannot quite set β1 := Proxy ? and β2 := Int,
because the kinds do not match up. Before we can proceed, we
must prove (α → ?) ∼R (? → ?) and α ∼R ?. However, we
see here that the kind equalities are representational, not nomi-
nal; this is a direct consequence of our choice of roles on kind γ.
After the constraint solver is done, α will still be left ambigu-
ous, as a representational equality does not fix the value of a uni-
fication variable. Indeed, this ambiguity is correct here, as it is
conceivable that the choice of α could have runtime significance
through the selection of different class instances. (Consider, say, a
newtype Star = MkStar ?, establishing a representational equal-
ity between Star and ?. Then, Star and ? could have different in-
stances for a certain class.)

We might imagine tweaking type inference to produce nominal
kind equalities here, but this would amount to “guessing” – making
an unforced commitment during inference, something GHC stu-
diously avoids in order to retain predictable type inference. Further-
more, when trying to decompose an assumption of type equality, (a
Given constraint in the terminology of the work of Vytiniotis et al.
[15]) we would be unable to produce a nominal kind equality in
this scenario.

This issue is not merely a theoretical concern, either. This
scenario came up when compiling the Control.Arrow module of
GHC’s standard library. Without the fix described shortly, that mod-
ule failed to compile due to an ambiguous kind variable.

My solution to this problem is to add a new way of extracting a
kind coercion from a type coercion, described by this rule:

Σ; Γ ` γ : τ1 σ1 ∼N τ2 σ2

Σ; Γ ` σ1 : κ1

Σ; Γ ` σ2 : κ2

Σ; Γ ` kapp γ : κ1 ∼N κ2
CO KAPPTY

Using kapp, we can extract a nominal coercion relating the kinds
of the arguments of a type application. Of course, simply adding
this one rule would violate type safety – we must also add an extra
requirement to the coercion form that relates type applications:

Σ; Γ ` γ1 : τ1 ∼ρ τ2
Σ; Γ ` γ2 : σ1 ∼N σ2

Σ; Γ ` σ1 : κ1 Σ; Γ ` σ2 : κ2

Σ; Γ ` η : κ1 ∼ρ κ2

Σ; Γ ` τ1 σ1 : κ0 Σ; Γ ` τ2 σ2 : κ′0
Σ; Γ ` γ1 γ2(η) : τ1 σ1 ∼ρ τ2 σ2

CO APPTY

We see that to prove a nominal equality between τ1 σ1 and τ2 σ2,
we must not only show that τ1 and σ1 are nominally equal to τ2
and σ2, respectively, but also that κ1 equals κ2. With this extra
requirement on the application coercion form, rule CO KAPPTY
becomes admissible, and therefore sound. See Appendix C for the
full details.

Having addressed the two shortcomings of choosing a represen-
tational role for kind γ, I believe that this choice is the best and is
the one implemented.

7. Maintaining sound type families
7.1 Overlap checking today
An open type family [3] in Haskell defines a function on types that
can be extended. For example, we can write the following:

type family F (a :: ?) :: ?
type instance F Int = Char -- instance (1)

Then, perhaps in another module, we can add a new equation, thus:

type instance F Bool = Double -- instance (2)

With both type instance declarations in scope, GHC will reduce
the type F Int to Char and F Bool to Double.

When adding equations to an open type family, it is necessary to
make sure that the new equation does not overlap with the old one.
For example, we cannot add the following instance to those above:

type instance F a = String -- instance (3)

This instance overlaps with both previous instances. If it were
allowed, then type families would behave differently in different
places, allowing a user to subvert the type system.

We thus need some way of eliminating the possibility of over-
lap. Because type family instances elaborate to axioms in System
FC, our check must somehow ensure that the left-hand sides of the
equations will never be nominally equal, even after arbitrary (well-
typed) substitutions. In the case of the last type instance above, the
substitution a 7→ Bool would make the left-hand side overlap with
the instance (2) above.

Our task is greatly simplified by the fact that type family equa-
tions cannot have type family applications on their left-hand side,
much like how term-level patterns may not call functions. In to-
day’s Haskell, the overlap check is a simple, syntactic unification
algorithm. If the left-hand sides fail to unify, then they must not
overlap.

A similar check is needed in the reduction of closed type fami-
lies. Consider the following:

type family G a where
G Int = Bool
G a = Char

The equations in a closed type family are meant to be understood
top-to-bottom. The definition for G means that G Int reduces to
Bool , and G a reduces to Char , as long as a is apart from Int.
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By apart here, I mean that the argument to G must never become
Int. For example, we cannot reduce G (F a), because we don’t
(yet) know whether F a is Int or not. The details of how apartness
interacts with closed type family reduction are written out in full in
previous work [4].

7.2 Type families with kind equalities
There are two aspects of the current system that cause trouble here:
coercions can appear in types, and coercions can be abstracted
over. The first problem is easily dispatched with. Simply erase
coercions before checking for overlap and apartness. You can see
this design choice in the coercion formation rules, Figure 4, which
erases types before doing the closed-type-family apartness check,
in rule CO TFAXIOM.

The second problem – coercion abstraction – can be seen in an
example:

type family G (a :: ?) :: ?
type instance G (∀ (c :: Int ∼ Bool). Bool) = Char
type instance G (∀ (c :: Bool ∼ Int). Int) = Double

Those two left-hand sides do not unify, yet they can be proved
nominally equal. We must reject these instance declarations.

Happily, the solution here is already existent in GHC: forbid
quantified types in patterns. The part that comes with kind equal-
ities is that we must also forbid this construction in System FC –
hence the restricted grammar for type patterns ξ that we see in Fig-
ure 2.15

In today’s Haskell (and in my implementation), quantified types
are somewhat limited in source Haskell – Haskell remains pred-
icative. Although inference with impredicativity has been tried in
GHC [14], most of that functionality has been removed, as it had
too many corner cases and induced too much confusing behavior.

System FC, on the other hand, has always been fully impredica-
tive. It has been possible, then, to allow axioms to work with quan-
tified types. With kind equalities, though, we must forbid this con-
struction. Eliminating quantified types on the left-hand side of type
family axioms is enough to establish the key consistency lemma,
the most intricate part of the proof of the progress theorem. The
statement and proof appear in Appendix C.

8. Implementation notes
A simpler equality to implement Implementing a system such
as the one described here is – for lack of a better word – fiddly.
The problem is that the implementation works with yet a different
equality relation than the ones discussed here: syntactic equality.
GHC’s function eqType checks if two types are equal only up to
α-equivalence.

What’s challenging about syntactic equality is that it distin-
guishes between, say, Int and Int . 〈?〉, and between τ , τ . γ .
sym γ, and τ.(γ#sym γ). A key property of System FC – proof ir-
relevance – “fails” with syntactic equality, because the actual struc-
ture of proofs matters there.

These difficulties can be overcome, of course, with very careful
management of casts, and many uses of coherence coercions. Yet,
during implementation, the rigidity of syntactic equality was a
constant source of bugs and engineering challenge.

The struggle to deal with syntactic equality led to a key insight:
use a more relaxed equality internally. We thus want to replace syn-
tactic equality with a new definitional equality. A first candidate for
this new definitional equality is erased equality – when checking
two types for equality, remove all casts and coercions first and then

15 Type patterns are also restricted in that all coercions must be bare coer-
cion variables c. This is to allow the coercion to have any concrete form
when instantiating.

check. However, simple erased equality does not work, as it might
relate types of different kinds; we need the definitional equality to
be substitutive, so a heterogeneous equality just won’t do.

Instead, the right answer for definitional equality appears to be
erased equality, plus an additional kind check. Of course, the kinds
are to be checked with the same choice of definitional equality. We
avoid infinite regress by the fact that all kinds have type ?. (That
is, it can be proved that if Σ; Γ ` τ : κ, then Σ; Γ ` κ : ?.)
This decision works very well in practice, and this redesign allowed
me to remove over 1,000 lines of code with no apparent change in
functionality.

Testsuite results As of the time of writing, the implementation
passes 3,762 of the 3,887 tests in the GHC testsuite, failing 125
tests. Notably, not a single test exhibits a program where my im-
plementation accepts a program that should be rejected. The vast
majority of the failures are due to changes in error messages; fu-
ture work will include improving these. Another large source of
errors is the lack of support for kind equalities in pattern synonyms
or in the GHCi debugger; these features have yet to be integrated
with my work.

Pay-as-you-go complexity The critical decision discussed in Sec-
tion 5 is for casts in types to have representational roles, as a par-
allel to casts in terms. Despite the possibility of using representa-
tional equality among kinds to have a cleaner relationship between
Constraint and ? (see Section 5.3), the primary motivation for this
design decision is to prepare for proper dependent types down the
road.

The next release of GHC will not, however, have proper depen-
dent types. It therefore seems imprudent to have representational
roles in kind casts until the addition of proper Π-types. Although
the system as described in this paper is implemented, the repre-
sentational roles in kind coercions will be removed as my imple-
mentation is merged into the main development stream of GHC.
Nevertheless, my collaborators and I are unaware of a better solu-
tion of how to integrate roles with dependent types, and I will retain
representational roles in kind coercions in my branch as I work on
adding proper Π-types.

9. Discussion
9.1 The ? :: ? axiom and partial correctness
The language I present in this paper sports the ?::? axiom. This is in
sharp contrast to more traditional dependently typed programming
languages, such as Coq, Agda, and Idris, all of which have an
infinite hierarchy of universes. In this infinite hierarchy, a standard
type Int would have type Type, which in turn has type Type1,
which has Type2, and so on. It has been established that the ? :: ?
axiom causes a system to be inconsistent as a logic [6] and can
allow authors to write non-terminating type-level programs.

However, these flaws do not concern us in Haskell. Adding
dependent-type features to Haskell is not an attempt to make GHC
a proof assistant. All types are already inhabited, by undefined at
the term level, and by the open type family Any (k :: ?) :: k at
the type level. If having ? :: ? allows us another way to inhabit a
type, it does not change the properties of the language. Due to its
inconsistency as a logic, the best a Haskell programmer can hope
for is partial correctness: if a Haskell program is ascribed to have a
certain type, then it is known to have that type only if the program
evaluates to a value in finite time. This guarantee has proved to be
sufficient to Haskellers, who continue to use advanced type-level
features despite the lack of total correctness.

There is intriguing related work, however, toward a Haskell ter-
mination checker [13] and pattern-match totality checker [8]. With
these tools in place, it may be possible to provide even stronger
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compile-time guarantees to programmers. An additional exciting
application is this related work is that it would allow GHC to opti-
mize away certain parts of a program that exist only to prove type
equality. Currently, all term-level equality proofs must be executed
at runtime; otherwise, we can’t be sure that the equality is sound.
If we could prove totality, though, running the proofs becomes un-
necessary. More work needs to be done to make this a reality, but
this is all an exciting direction to look to in the future.

9.2 Other related work
The previous paper describing the system implemented here [18]
contains a thorough review of related work. The reader is encour-
aged to look there to see how System FC relates to the literature.

9.3 Future work
There is much work left to do. Here are some starting points:

• The implementation discussed here necessarily does type infer-
ence to produce a well-typed System FC program from a source
Haskell text. Although GHC’s type inference algorithm did not
require extensive modifications to make this work, the process
of analyzing types is somewhat more involved than it was previ-
ously. Future work on type inference includes an in-depth anal-
ysis and explanation of the new algorithm.

• GHC supports deferred type errors [16], which allow a user to
successfully compile a type-incorrect program. If the program
then executes type-incorrect code, the running program halts
with an error. With the kind equalities implemented here, it is
possible to extend this idea to deferred kind errors. The details
have yet to be worked out, however.

• With kind equalities in GHC, we are much closer to being able
to implement a proper dependent quantifier into Haskell, along
the lines of Gundry [7]. Working out the details and implement-
ing is important future work along this line of research.

9.4 Conclusion
The fundamental tension that causes the incorporation of kind
equalities into GHC to be challenging is that there are many no-
tions of equality (and equality-like relations, such as sub-kinding)
in the compiler. In particular, there seems to be tension between
performance and abstraction; it is the interaction between these two
desiderata that gave birth to newtypes and, later, roles, in Haskell.

The solutions proposed in this work vary in elegance. In my
opinion, levity polymorphism seems like a nice solution to a
slightly thorny problem. On the other hand, the lack of a clean
fit between roles and kind equalities is dissatisfying, as is the in-
completeness of the power of type family matching. Yet, the solu-
tions put forth here are adequately expressive, and provably imple-
mentable. With kind equalities in hand, users can start to adopt yet
richer types and continue to push the limits of practical, strongly
typed programming.
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A. System FC, in full
Throughout this entire proof of type safety, any omitted proof
is by (perhaps mutual) straightforward induction on the relevant
derivations.

As usual, all definitions and proofs are only up toα-equivalence.
If there is a name clash, assume a variable renaming to a fresh vari-
able.

A.1 The grammar of System FC
H ::= TYPE | (→) | ’K | T Type constants
T ::= D |N Algebraic types
e, u ::= x | λδ.e | e1 e2 | e τ | e γ | e . γ Expressions

| K | case e return τ of π → u | contra γ τ
π ::= K z x Patterns
ε ::= E |NE Erasure modalities
τ, σ, κ ::= a |H | τ ψ | ∀ δ.τ | F [τ ] | τ . γ Types
ξ ::= a |H | ξ1 ξ2 | ξ c | ξ . c Type patterns
δ ::= a:εκ | c:φ | x :τ Binders
ψ ::= τ | γ Arguments
γ, η ::= 〈τ〉 | sym γ | γ1 # γ2 | γ1 → γ2 Coercions

| H (ω) | γ1 γ2(η) | γ1 (γ2, γ3)χ | ∀εη(a1, a2, c).γ

| ∀χ(c1, c2).γ | F [γ] | nthi γ | left γ | right γ
| γ@ω | kind γ | kapp γ | kapp1 γ | kapp2 γ
| c | F [i ][ψ] | N [τ ] | sub γ | γ . η

ω ::= γ | (γ1, γ2)ρ Coercion args.
φ ::= τ1 ∼ρ τ2 Propositions
χ ::= 〈η1, η2〉ρ Higher-order cos.
z ::= a | c Type/coercion var.
ζ ::= κ | φ Type/coercion kind
ρ ::= N | R Roles
Φ ::= [∆].F [ξ] ∼N σ T.F. equations
Ψ ::= Φ T.F. axiom types
Σ ::= ∅ | Σ, sbnd Signatures
sbnd ::= T : ∀ ·∆. ? |K : τ | F : [∆].κ Sig. bindings

| F : Ψ | N : [a:κ].N a ∼κR σ
Γ,∆ ::= ∅ | Γ, δ Contexts
·∆ ::= ∅ | ·∆, rbnd Telescopes w/roles
rbnd ::= a:Eρκ | c:φ Roled bindings
θ ::= ∅ | θ,map Substitutions
map ::= τ/a | γ/c Mappings

t ::= a |H | t p | ∀ d .t | F [t ] Erased types
f ::= t1 ∼ρ t2 Erased props.
p ::= t(k) | •(f ) Erased args.
d ::= a:εk | •:f Erased binders
q ::= ∅ | q , emap Erased substs.
emap ::= t/a | • /c Erased mappings

L ::= ∅ | L, lmap Lifting contexts
lmap ::= a 7→ γ | c 7→ (η1, η2) Liftings

A.2 Typing and validity judgments

Σ ` H has roles ρ Role assignment to constants

T : ∀ ai :Eρiκi
i
.? ∈ Σ

Σ ` T has roles ρi i
ROLES TYCON

K : ∀ ai :Eκi
i
.∀ zj :Eζj

j
.σk

k → D ai κi
i ∈ Σ

Σ ` ’K has roles N
i
, N

j
, R

k
ROLES DCON

Σ ` (→) has roles R,R
ROLES ARROW

Σ ` TYPE has roles N
ROLES TYPE

Σ ` H : κ Constant kinds

Σ ` TYPE : Levity → ?
CONST TYPE

Σ ` (→) : ?→ ?→ ?
CONST ARROW

K : τ ∈ Σ

Σ ` ’K : τ
CONST DATACON

T : ∀ ai :Eρiκi
i
.? ∈ Σ

Σ ` T : ∀ ai :Eκi
i
.?

CONST TYCON

eraseΣ;Γ(τ) t Erasure of types

eraseΣ;Γ(a) a
ERASE VAR

eraseΣ;Γ(H ) H
ERASE TYCON

eraseΣ;Γ(τ1) t1
eraseΣ;Γ(τ2) t2
Σ; Γ ` τ2 : κ
eraseΣ;Γ(κ) k

eraseΣ;Γ(τ1 τ2) t1 t2(k)

ERASE APPTY

eraseΣ;Γ(τ) t
Σ; Γ ` γ : φ
eraseΣ;Γ(φ) f

eraseΣ;Γ(τ γ) t •(f )

ERASE APPCO

eraseΣ;Γ(κ) k
eraseΣ;Γ,a:κ(τ) t

eraseΣ;Γ(∀ a:εκ.τ) ∀ a:εk .t
ERASE FORALLTY

eraseΣ;Γ(φ) f
eraseΣ;Γ,c:φ(τ) t

eraseΣ;Γ(∀ c:φ.τ) ∀ •:f .t ERASE FORALLCO

eraseΣ;Γ(τ) t

eraseΣ;Γ(F [τ ]) F [t ]
ERASE TYFAM

eraseΣ;Γ(τ) t

eraseΣ;Γ(τ . γ) t
ERASE CAST

eraseΣ;Γ(ψ) p Erasure of argument lists

eraseΣ;Γ(∅) ∅
ERASE NIL

eraseΣ;Γ(τ) t
Σ; Γ ` τ : κ
eraseΣ;Γ(κ) k
eraseΣ;Γ(ψ) p

eraseΣ;Γ(τ, ψ) t(k), p
ERASE TYPE

Σ; Γ ` γ : φ
eraseΣ;Γ(φ) f
eraseΣ;Γ(ψ) p

eraseΣ;Γ(γ, ψ) •(f ), p
ERASE COERCION
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eraseΣ;Γ(φ) f Erasure of propositions

eraseΣ;Γ(κ1) k1

eraseΣ;Γ(κ2) k2

eraseΣ;Γ(τ1) t1
eraseΣ;Γ(τ2) t2

eraseΣ;Γ(τ1 ∼ρ τ2) t1 ∼ρ t2
ERASE PROP

Σ ` compat(Φ1,Φ2) Type family equation compatibility

Φ1 = [∆1].F [ξ1] ∼N σ1

Φ2 = [∆2].F [ξ2] ∼N σ2

eraseΣ;∆1(ξ1) t1

eraseΣ;∆1(σ1) s1

eraseΣ;∆2(ξ2) t2

eraseΣ;∆2(σ2) s2

unify(t1, t2) = q
q(s1) = q(s2)

Σ ` compat(Φ1,Φ2)
COMPAT COINCIDENT

Φ1 = [∆1].F [ξ1] ∼N σ1

Φ2 = [∆2].F [ξ2] ∼N σ2

eraseΣ;∆1(ξ1) t1

eraseΣ;∆2(ξ2) t2

unify(t1, t2) fails
Σ ` compat(Φ1,Φ2)

COMPAT DISTINCT

Σ ` no conflict(Ψ,Φ, t , i) T.F. equation conflict check

Σ ` no conflict(Ψ,Φ, t , 0)
NC ZERO

Ψ = [∆k ].F [ξk ] ∼N σk

k

eraseΣ;∆j (ξj ) t
apart(t , t0)
Σ ` no conflict(Ψ,Φ, t0, j )

Σ ` no conflict(Ψ,Φ, t0, j + 1)
NC APART

Σ ` compat(Φ0,Φj )

Σ ` no conflict(Φk
k
,Φ0, t , j )

Σ ` no conflict(Φk
k
,Φ0, t , j + 1)

NC COMPATIBLE

Σ; Γ ` τ : κ Kinding

a:τ ∈ Γ
Σ; Γ ` ctx

Σ; Γ ` a : τ
TY VAR

Σ; Γ ` ctx
Σ ` H : κ

Σ; Γ ` H : κ
TY CONST

Σ; Γ ` τ1 : TYPE σ1

Σ; Γ ` τ2 : TYPE σ2

Σ; Γ ` τ1 → τ2 : ?
TY ARROW

Σ; Γ ` τ : κ1 → κ2

Σ; Γ ` σ : κ1

Σ; Γ ` κ1 : ?
¬∃ τ ′ s.t. τ = (→) τ ′

Σ; Γ ` τ σ : κ2
TY APP

Σ; Γ ` τ : ∀ a:εκ1.κ2

Σ; Γ ` σ : κ1

Σ; Γ ` κ1 : ?

Σ; Γ ` τ σ : κ2[σ/a]
TY APPTY

Σ; Γ ` τ : ∀ c:φ.κ
Σ; Γ ` γ : φ

Σ; Γ ` τ γ : κ[γ/c]
TY APPCO

Σ; Γ, a:κ ` τ : TYPE σ
Σ; Γ ` σ : Levity

Σ; Γ ` ∀ a:Eκ.τ : TYPE σ
TY FORALLTY E

Σ; Γ, a:κ ` τ : TYPE σ

Σ; Γ ` ∀ a:NEκ.τ : ?
TY FORALLTY NE

Σ; Γ, c:φ ` τ : ?

Σ; Γ ` ∀ c:φ.τ : ?
TY FORALLCO

F : [∆].κ ∈ Σ
Σ; Γ `tel τ ⇐ ∆

Σ; Γ ` F [τ ] : κ[τ/∆]
TY TYFAM

Σ; Γ ` τ : σ1

Σ; Γ ` γ : σ1 ∼R σ2

Σ; Γ ` σ2 : ?

Σ; Γ ` τ . γ : σ2
TY CAST

Σ; Γ ` γ : φ Coercion typing

Σ; Γ ` τ : κ

Σ; Γ ` 〈τ〉 : τ ∼N τ
CO REFL

Σ; Γ ` γ : τ2 ∼ρ τ1
Σ; Γ ` sym γ : τ1 ∼ρ τ2

CO SYM

Σ; Γ ` γ1 : τ1 ∼ρ τ2
Σ; Γ ` γ2 : τ2 ∼ρ τ3

Σ; Γ ` γ1 # γ2 : τ1 ∼ρ τ3
CO TRANS

Σ; Γ ` γ1 : τ1 ∼ρ σ1

Σ; Γ ` γ2 : τ2 ∼ρ σ2

Σ; Γ ` γ1 → γ2 : (τ1 → τ2) ∼ρ (σ1 → σ2)
CO ARROW

Σ ` H has roles ρi i

Σ; Γ ` ωi : (ψi , ψ′i)ρi
i

Σ; Γ ` H ψi
i

: κ1

Σ; Γ ` H ψ′i
i

: κ2

Σ; Γ ` H (ωi
i ) : H ψi

i ∼R H ψ′i
i

CO TYCONAPP

Σ; Γ ` γ1 : τ1 ∼ρ τ2
Σ; Γ ` γ2 : σ1 ∼N σ2

Σ; Γ ` σ1 : κ1 Σ; Γ ` σ2 : κ2

Σ; Γ ` η : κ1 ∼ρ κ2

Σ; Γ ` τ1 σ1 : κ0 Σ; Γ ` τ2 σ2 : κ′0
Σ; Γ ` γ1 γ2(η) : τ1 σ1 ∼ρ τ2 σ2

CO APPTY
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Σ; Γ ` γ0 : τ1 ∼ρ τ2
Σ; Γ ` γ1 : φ1 Σ; Γ ` τ1 γ1 : κ′1
Σ; Γ ` γ2 : φ2 Σ; Γ ` τ2 γ2 : κ′2
Σ; Γ ` χ : φ1 ∼ρ φ2

Σ; Γ ` γ0 (γ1, γ2)χ : τ1 γ1 ∼ρ τ2 γ2
CO APPCO

Σ; Γ ` η : κ1 ∼ρ κ2

Σ; Γ, a1:κ1, a2:κ2, c:a1 ∼N a2 ` γ : τ1 ∼ρ τ2
Σ; Γ ` ∀ a1:εκ1.τ1 : σ1 Σ; Γ ` ∀ a2:εκ2.τ2 : σ2

Σ; Γ ` ∀εη(a1, a2, c).γ : ∀ a1:εκ1.τ1 ∼ρ ∀ a2:εκ2.τ2
CO FORALLTY

Σ; Γ ` χ : φ1 ∼ρ φ2

Σ; Γ, c1:φ1, c2:φ2 ` γ : τ1 ∼ρ τ2
Σ; Γ ` ∀ c1:φ1.τ1 : σ1 Σ; Γ ` ∀ c2:φ2.τ2 : σ2

Σ; Γ ` ∀χ(c1, c2).γ : ∀ c1:φ1.τ1 ∼ρ ∀ c2:φ2.τ2
CO FORALLCO

Σ; Γ ` γi : τi ∼N σi
i

Σ; Γ ` F [τ ] : κ01

Σ; Γ ` F [σ] : κ02

Σ; Γ ` F [γ] : F [τ ] ∼N F [σ]
CO TYFAM

Σ; Γ ` γ : H ψj
j ∼R H ψ′j

j

ψi = τ Σ; Γ ` τ : κ1

ψ′i = σ Σ; Γ ` σ : κ2

Σ ` H has roles ρj j

H is not a newtype
Σ; Γ ` nthi γ : τ ∼ρi σ

CO NTH

Σ; Γ ` γ : ∀ a1:εκ1.τ1 ∼ρ ∀ a2:εκ2.τ2

Σ; Γ ` nth0 γ : κ1 ∼ρ κ2

CO NTHTY

Σ; Γ ` γ : (∀ c1:τ1 ∼ρ2 τ
′
1.σ1) ∼ρ (∀ c2:τ2 ∼ρ2 τ

′
2.σ2)

Σ; Γ ` nth0 γ : τ1 ∼ρ τ2
CO NTH0CO

Σ; Γ ` γ : (∀ c1:τ1 ∼ρ2 τ
′
1.σ1) ∼ρ (∀ c2:τ2 ∼ρ2 τ

′
2.σ2)

Σ; Γ ` nth1 γ : τ ′1 ∼ρ τ ′2
CO NTH1CO

Σ; Γ ` γ : τ1 ψ1 ∼N τ2 ψ2

Σ; Γ ` τ1 : κ1 Σ; Γ ` τ2 : κ2

Σ; Γ ` left γ : τ1 ∼N τ2
CO LEFT

Σ; Γ ` γ : τ1 σ1 ∼N τ2 σ2

Σ; Γ ` σ1 : κ1 Σ; Γ ` σ2 : κ2

Σ; Γ ` right γ : σ1 ∼N σ2
CO RIGHT

Σ; Γ ` γ : ∀ a1:εκ1.τ1 ∼ρ ∀ a2:εκ2.τ2
Σ; Γ ` η : σ1 ∼N σ2

Σ; Γ ` σ1 : κ1 Σ; Γ ` σ2 : κ2

Σ; Γ ` γ@η : τ1[σ1/a1] ∼ρ τ2[σ2/a2]
CO INSTTY

Σ; Γ ` γ : ∀ c1:φ1.τ1 ∼ρ ∀ c2:φ2.τ2
Σ; Γ ` η1 : φ1

Σ; Γ ` η2 : φ2

Σ; Γ ` γ@(η1, η2)N : τ1[η1/c1] ∼ρ τ2[η2/c2]
CO INSTCO

Σ; Γ ` γ : τ1 ∼ρ τ2
Σ; Γ ` τ1 : κ1 Σ; Γ ` τ2 : κ2

Σ; Γ ` kind γ : κ1 ∼R κ2
CO KIND

Σ; Γ ` γ : τ1 σ1 ∼N τ2 σ2

Σ; Γ ` σ1 : κ1

Σ; Γ ` σ2 : κ2

Σ; Γ ` kapp γ : κ1 ∼N κ2
CO KAPPTY

Σ; Γ ` γ : τ1 γ1 ∼N τ2 γ2

Σ; Γ ` γ1 : σ1 ∼ρ σ2

Σ; Γ ` γ2 : σ3 ∼ρ σ4

Σ; Γ ` kapp1 γ : σ1 ∼N σ3
CO KAPPCO1

Σ; Γ ` γ : τ1 γ1 ∼N τ2 γ2

Σ; Γ ` γ1 : σ1 ∼ρ σ2

Σ; Γ ` γ2 : σ3 ∼ρ σ4

Σ; Γ ` kapp2 γ : σ2 ∼N σ4
CO KAPPCO2

c:φ ∈ Γ
Σ; Γ ` ctx

Σ; Γ ` c : φ
CO VAR

F : Ψ ∈ Σ Ψ[i ] = [∆].F [ξ] ∼N σ
F : [∆2].κ′ ∈ Σ Σ; Γ `tel ψ ⇐ ∆
eraseΣ;Γ(ξ[ψ/∆]) t Σ; Γ ` κ′[ξ[ψ/∆]/∆2] : ?
Σ ` no conflict(Ψ,Ψ[i ], t , i)

Σ; Γ ` F [i ][ψ] : F [ξ][ψ/∆] ∼N σ[ψ/∆]
CO TFAXIOM

N : [a:κ].N a ∼κ0
R σ ∈ Σ

Σ; Γ `tel τ ⇐ a:κ
Σ; Γ ` κ0[τ/a] : ?

Σ; Γ ` N [τ ] : N τ ∼R σ[τ/a]
CO NTAXIOM

Σ; Γ ` γ : τ1 ∼N τ2

Σ; Γ ` sub γ : τ1 ∼R τ2
CO SUB

Σ; Γ ` γ : τ1 ∼ρ τ2
Σ; Γ ` τ1 . η : κ′1

Σ; Γ ` γ . η : (τ1 . η) ∼ρ τ2
CO COHERENCE

Σ; Γ ` ω : (ψ1, ψ2)ρ Coercion argument typing

Σ; Γ ` γ : τ1 ∼ρ τ2
Σ; Γ ` γ : (τ1, τ2)ρ

COARG TY

Σ; Γ ` γ1 : φ1

Σ; Γ ` γ2 : φ2

Σ; Γ ` (γ1, γ2)ρ : (γ1, γ2)ρ
COARG CO

Σ; Γ ` χ : φ1 ∼ρ φ2 Higher-order coercion typing

Σ; Γ ` η1 : σ1 ∼ρ σ3

Σ; Γ ` η2 : σ2 ∼ρ σ4

φ1 = σ1 ∼ρ2 σ2 φ2 = σ3 ∼ρ2 σ4

Σ; Γ ` 〈η1, η2〉ρ2 : φ1 ∼ρ φ2
HCO PAIR

Σ; Γ `tel ψ ⇐ ∆ Telescope typing

Σ; Γ ` ctx

Σ; Γ `tel ∅⇐ ∅
TEL NIL

Σ; Γ `tel ψ ⇐ ∆
Σ; Γ ` τ : κ[ψ/∆]

Σ; Γ `tel ψ, τ ⇐ ∆, a:κ
TEL TY
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Σ; Γ `tel ψ ⇐ ∆
Σ; Γ ` γ : φ[ψ/∆]

Σ; Γ `tel ψ, γ ⇐ ∆, c:φ
TEL CO

Σ; Γ ` φ ok Proposition validity

Σ; Γ ` τ1 : κ1 Σ; Γ ` τ2 : κ2

Σ; Γ ` τ1 ∼ρ τ2 ok
PROP EQUALITY

Σ; Γ ` ctx Context validity

` Σ ok

Σ;∅ ` ctx
CTX EMPTY

Σ; Γ ` κ : ?
a # Γ

Σ; Γ, a:κ ` ctx
CTX TYVAR

Σ; Γ ` φ ok
c # Γ

Σ; Γ, c:φ ` ctx
CTX COVAR

Σ; Γ ` τ : TYPE ’Lifted
x # Γ

Σ; Γ, x :τ ` ctx
CTX LIFTEDVAR

Σ; Γ ` τ : TYPE ’Unlifted
x # Γ

Σ; Γ, x :τ ` ctx
CTX UNLIFTEDVAR

` Σ ok Signature validity

` Levity : ?, Lifted : Levity ,Unlifted : Levity ok
SIG BOOT

Σ;∅ ` ∀ ai :Eκi
i
.? : ?

T # Σ

` Σ,T : ∀ ai :Eρiκi
i
. ? ok

SIG TYCON

τ = ∀ ai :Eκi
i
.∀∆.D ai κi

i

Σ;∅ ` τ : ?
K # Σ

` Σ,K : τ ok
SIG DATACON

Σ; ai :κi
i ` τ : ?

F # Σ

` Σ,F : [ai :κi
i ].τ ok

SIG TYFAM

∀ i :
Φi = [∆i ].F [ξi ] ∼N σi

Σ; ∆i ` F [ξi ] : κi

Σ; ∆i ` σi : κi

F # Σ
n > 1
no axiom for F exists in Σ

` Σ,F : Φi
i<n

ok
SIG TFBRAXIOM

Σ; ∆ ` F [ξ] : κ
Σ; ∆ ` σ : κ
F # Σ
∀i such that F ′i : [∆i ].F [ξi ] ∼N σi ∈ Σ:

Σ ` compat([∆].F [ξ] ∼N σ, [∆i ].F [ξi ] ∼N σi)

` Σ,F : [∆].F [ξ] ∼N σ ok
SIG TFAX1

Σ; a:κ ` N a : κ
Σ; a:κ ` σ : κ
N # Σ
no axiom for N exists in Σ

` Σ,N : [a:κ].N a ∼κR σ ok
SIG NTAXIOM

Σ; Γ ` e : τ Typing

x :τ ∈ Γ
Σ; Γ ` ctx

Σ; Γ ` x : τ
TM VAR

Σ; Γ, x :τ1 ` e : τ2

Σ; Γ ` λx :τ1.e : τ1 → τ2
TM ABS

Σ; Γ ` e : τ1 → τ2
Σ; Γ ` u : τ1

Σ; Γ ` e u : τ2
TM APP

Σ; Γ, a:κ ` e : τ

Σ; Γ ` λa:εκ.e : ∀ a:εκ.τ
TM TABS

Σ; Γ ` e : ∀ a:εκ.σ
Σ; Γ ` τ : κ

Σ; Γ ` e τ : σ[τ/a]
TM TAPP

Σ; Γ, c:φ ` e : τ

Σ; Γ ` λc:φ.e : ∀ c:φ.τ
TM CABS

Σ; Γ ` e : ∀ c:φ.σ
Σ; Γ ` γ : φ

Σ; Γ ` e γ : σ[γ/c]
TM CAPP

Σ; Γ ` e : τ1
Σ; Γ ` γ : τ1 ∼R τ2
Σ; Γ ` τ2 : TYPE σ

Σ; Γ ` e . γ : τ2
TM CAST

K : τ ∈ Σ
Σ; Γ ` ctx

Σ; Γ ` K : τ
TM DATACON

Σ; Γ ` e : D τj
j

Σ; Γ ` τ : ?

Ki
i

are exhaustive for D
∀ i :

Ki : ∀ aj :Eκj
j
.∀ zi k :Eζi k

k
.σi m

m → D aj
j ∈ Σ

Σ; Γ, zi k :Eζi k [τ/a]
k
, xi m :σi m [τ/a]

m
` ui : τ

Σ; Γ ` case e return τ of Ki z i x i → ui
i

: τ
TM CASE

Σ; Γ ` γ : H1 τ ∼N H2 σ
H1 6= H2

Σ; Γ ` τ : TYPE σ

Σ; Γ ` contra γ τ : τ
TM CONTRA
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Σ; ·∆ `ρ τ ok “Assuming ·∆, τ can be used at role ρ.”

a:Eρ′κ ∈ ·∆
ρ′ ≤ ρ

Σ; ·∆ `ρ a ok
R VAR

b # ·∆
Σ; ·∆ `ρ b ok

R OTHERVAR

Σ ` H has roles ρ
Σ; ·∆ `ρi τi ok

i

Σ; ·∆ `R H τ ok
R TYCONAPP

Σ; ·∆ `N H ok
R TYCON

Σ; ·∆ `ρ τ ok
Σ; ·∆ `N σ ok

Σ; ·∆ `ρ τ σ ok
R APPTY

Σ; ·∆ `ρ τ ok

Σ; ·∆ `ρ τ γ ok
R APPCO

Σ; ·∆ `ρ κ ok
Σ; ·∆, a:ENκ `ρ τ ok

Σ; ·∆ `ρ ∀ a:εκ.τ ok
R FORALLTY

Σ; ·∆ `ρ φ ok
Σ; ·∆, c:φ `ρ τ ok

Σ; ·∆ `ρ ∀ c:φ.τ ok
R FORALLCO

Σ; ·∆ `N τi ok
i

Σ; ·∆ `ρ F [τ ] ok
R TYFAM

Σ; ·∆ `ρ τ ok

Σ; ·∆ `ρ τ . γ ok
R CAST

Σ; ·∆ `ρ φ ok “Assuming ·∆, φ can be used at role ρ.”

Σ; ·∆ `min(ρ,ρ2) σ1 ok
Σ; ·∆ `min(ρ,ρ2) σ2 ok

Σ; ·∆ `ρ σ1 ∼ρ2 σ2 ok
RPROP EQUALITY

ρ1 ≤ ρ2 “ρ1 is a sub-role of ρ2.”

N ≤ R
SUB NOMREP

ρ ≤ ρ SUB REFL

Σ ` H ⇐ ρ “ρ are appropriate roles for H .”

∀ a, b, σ s.t. K : ∀ a:Eκ.∀ b:Eκ′.σ → D a ∈ Σ :

Σ; a:ρκ `R σi ok
i

Σ ` D ⇐ ρ
ROLES DATA

N : [a:κ].N a ∼κR σ ∈ Σ
Σ; a:ρκ `R σ ok

Σ ` N ⇐ ρ
ROLES NEWTYPE

Lemma 1 (Sub-roling). If Σ; ·∆ `ρ τ ok and ρ ≤ ρ′, then
Σ; ·∆ `ρ′ τ ok.

B. Lifting
Definition 2 (Lifting contexts). Define a lifting context L to be
a list of mappings from type variables to coercions (a 7→ γ) and
coercion variables to pairs of coercions c 7→ (η1, η2).

Lifting contexts are checked for validity by the following judg-
ment:

Σ; Γ ` L⇐ ·∆ Lifting context validity

Σ; Γ ` ∅⇐ ∅
LC NIL

Σ; Γ ` L⇐ ·∆
Σ; Γ ` γ : σ1 ∼ρ σ2

Σ; Γ ` σ1 : LL
Σ;Γ(κ) Σ; Γ ` σ2 : LR

Σ;Γ(κ)

Σ; Γ ` L, a 7→ γ ⇐ ·∆, a:Eρκ
LC TYPE

Σ; Γ ` L⇐ ·∆
Σ; Γ ` γ1 : LL

Σ;Γ(φ)
Σ; Γ ` γ2 : LR

Σ;Γ(φ)

Σ; Γ ` L, c 7→ (γ1, γ2)⇐ ·∆, c:φ
LC COERCION

Definition 3 (Lifting substitutions). If L is a lifting context, then
let θ = LL

Σ;Γ be a substitution, built by the following two rules:

1. For every a 7→ γ ∈ L, a 7→ σ1 ∈ θ, where Σ; Γ ` γ : σ1 ∼ρ
σ2.

2. For every c 7→ (γ1, γ2) ∈ L, c 7→ γ1 ∈ θ.

Define LR
Σ;Γ similarly, but with σ2 and γ2 instead of σ1 and γ1.

Definition 4 (Lifting). Define the lifting operation, written LΣ;Γ(τ)ρ =
γ over types, LΣ;Γ(γ)ρ = ω over coercions, and LΣ;Γ(φ)ρ = χ
over propositions, as follows, with equations tried in order from
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top to bottom.

LΣ;Γ(a)ρ = γ
where a 7→ γ ∈ L ∧ Σ; Γ ` γ : σ1 ∼ρ σ2

LΣ;Γ(a)R = sub γ
where a 7→ γ ∈ L

LΣ;Γ(a)N = 〈a〉
where a 6∈ dom(L)

LΣ;Γ(a)R = sub 〈a〉
where a 6∈ dom(L)

LΣ;Γ(τ1 → τ2)ρ = LΣ;Γ(τ1)ρ → LΣ;Γ(τ2)ρ

LΣ;Γ(H ψ)R = H (LΣ;Γ(ψi)ρi
i
)

where Σ ` H has roles ρ

LΣ;Γ(H )N = 〈H 〉
LΣ;Γ(τ1 τ2)ρ = LΣ;Γ(τ1)ρ LΣ;Γ(τ2)N(LΣ;Γ(κ2)ρ)

where Σ; Γ ` τ2 : κ2

LΣ;Γ(τ γ)ρ = LΣ;Γ(τ)ρ (LL
Σ;Γ(γ),LR

Σ;Γ(γ))LΣ;Γ(φ)ρ

where Σ; Γ ` γ : φ

LΣ;Γ(∀ a:εκ.τ)ρ = ∀εLΣ;Γ(κ)ρ
(a1, a2, c).L′Σ;Γ′(τ)ρ

where L′ = L, a 7→ c
Γ′ = Γ, a1:LL

Σ;Γ(κ), a2:LR
Σ;Γ(κ), c:a1 ∼N a2

a1, a2, and c are fresh
LΣ;Γ(∀ c:φ.τ)ρ = ∀LΣ;Γ(φ)ρ(c1, c2).L′Σ;Γ′(τ)ρ

where L′ = L, c 7→ (c1, c2)
Γ′ = Γ, c1:LL

Σ;Γ(φ), c2:LR
Σ;Γ(φ)

c1 and c2 are fresh
LΣ;Γ(F [τ ])N = F [LΣ;Γ(τ)N]

LΣ;Γ(F [τ ])R = subF [LΣ;Γ(τ)N]

LΣ;Γ(τ . γ)ρ = (sym ((symLΣ;Γ(τ)ρ) . L
R
Σ;Γ(γ))) . LL

Σ;Γ(γ)

LΣ;Γ(γ)ρ = (LL
Σ;Γ(γ),LR

Σ;Γ(γ))ρ

LΣ;Γ(τ1 ∼ρ2 τ2)ρ = 〈LΣ;Γ(τ1)min(ρ,ρ2),LΣ;Γ(τ2)min(ρ,ρ2)〉ρ2

Lemma 5 (Lifting). Assume Σ; Γ ` L⇐ ·∆, and let Γ′ = Γ, | ·∆|.

1. If Σ; Γ′ ` τ : κ and and Σ; ·∆ `ρ τ ok, then Σ; Γ `
LΣ;Γ′(τ)ρ : LL

Σ;Γ′(τ) ∼ρ LR
Σ;Γ′(τ).

2. If Σ; Γ′ ` φ ok and Σ; ·∆ `ρ φ ok, then Σ; Γ ` LΣ;Γ′(φ)ρ :
LL

Σ;Γ′(φ) ∼ρ LR
Σ;Γ′(φ).

Proof. By induction on the typing derivation Σ; Γ, | ·∆| ` τ : κ.

Case TY VAR: We know τ = a . We have several cases to con-
sider here:
a 6∈ dom(L): Straightforward application of typing rules.
a 7→ γ ∈ L,Σ; Γ′ ` γ : σ1 ∼ρ σ2: Straightforward applica-

tion of typing rules. Note that γ must not mention variables
bound in ·∆, as per Σ; Γ ` L⇐ ·∆.

a 7→ γ ∈ L,Σ; Γ′ ` γ : σ1 ∼N σ2, ρ = R: Straightforward
application of typing rules.

a 7→ γ ∈ L,Σ; Γ′ ` γ : σ1 ∼R σ2, ρ = N: This case is im-
possible, given that Σ; Γ ` L⇐ ·∆ and Σ; ·∆ `N a ok.

Case TY CONST: Straightforward application of typing rules.
Case TY ARROW: We know τ = τ1 → τ2, and LΣ;Γ′(τ1 →

τ2)ρ = LΣ;Γ′(τ1)ρ → LΣ;Γ′(τ2)ρ. We finish by induction,
noting that the roles on (→) are both representational, as re-
quired for us to satisfy the premises of the induction hypothesis
in the ρ = R case.

Case TY APP: We know τ = τ1 τ2. We now have several cases:

τ = H ψ, ρ = R: We see that LΣ;Γ′(H ψ)R = H (LΣ;Γ′(ψi)ρi
i
)

where Σ ` H has roles ρ. Inversion on Σ; ·∆ `ρ H ψ ok
can go by either R TYCONAPP or R APP. In either case,
we can finish via induction, perhaps invoking Lemma 1 in
the R APP case.

Other cases: By induction. Here, there is no overlap when in-
verting Σ; ·∆ `ρ τ ok to establish the premises of the induc-
tive hypothesis. It is here that we need the extra conditions
on κ1 in TY APP and TY APPTY in order to keep induction
well-founded.

Case TY APPTY: Similar to previous case.
Case TY APPCO: We know τ = τ0 γ. Let γ0 = LΣ;Γ′(τ0)ρ,

γ1 = LL
Σ;Γ′(γ), γ2 = LR

Σ;Γ′(γ), and χ = LΣ;Γ′(φ)ρ. We
then know LΣ;Γ′(τ0 γ)ρ = γ0 (γ1, γ2)χ. We are done by the
induction hypothesis and CO APPCO.

Case TY FORALLTY: We know τ = ∀ a:εκ.τ0. Let ∀εη(a1, a2, c).γ =
LΣ;Γ′(τ)ρ. We can straightforwardly apply the induction hy-
pothesis to learn about η. Let Γ2 = Γ, | ·∆|, a1:κ1, a2:κ2, c:a1 ∼N

a2, where κ1 = LL
Σ;Γ′(κ) and κ2 = LR

Σ;Γ′(κ). We wish to
use the induction hypothesis to learn about γ = L′Σ;Γ2(τ0)ρ,
where L′ = L, a 7→ c. However, we have to fix the con-
texts. We can see that fv(κ1) # ·∆ and fv(κ2) # ·∆, because
all the variables in ·∆ have been substituted away. Let Γ1 =
Γ, a1:κ1, a2:κ2, c:a1 ∼N a2. We thus permute and weaken
Γ2 to Γ3 = Γ1, | ·∆|, a:κ. Now, we set ·∆′ = ·∆, a:ENκ, and
we can see Σ; Γ1 ` L′ ⇐ ·∆′, Σ; Γ1, | ·∆′| ` τ0 : ?, and
Σ; ·∆′ `ρ τ0 ok, allowing us to use the induction hypothesis to
finish.

Case TY FORALLCO: Similar to last case.
Case TY TYFAM: Straightforward use of induction hypothesis

and typing rules.
Case TY CAST: Straightforward use of induction hypothesis and

typing rules.
Case PROP EQUALITY: Straightforward use of induction hy-

pothesis and typing rules.

C. Consistency
The proof that follows is heavily based on the consistency proof in
Breitner et al. [2], updated where necessary. Some text is copied
verbatim from that previous paper, with permission.

Throughout this proof, I always assume that ` Σ ok.

Definition 6 (Value types). Define value types as types that fit in
the following grammar:

υ ::=D | ’K | TYPE | (→) | ∀ δ.τ | υ τ

Definition 7 (Type consistency). Two types τ1 and τ2 are consis-
tent if, whenever they are both value types:

1. If τ1 = H σ, then τ2 = H σ′;
2. If τ1 = ∀ δ1.τ1 then τ2 = ∀ δ2.τ2.

Note that if either τ1 or τ2 is not a value type, then they are
vacuously consistent. Also, no that a type headed by a newtype is
not a value type.

Definition 8 (Context consistency). A signature Σ is consistent if,
whenever Σ;∅ ` γ : τ1 ∼R τ2, τ1 and τ2 are consistent.

In order to prove consistency, we define a type reduction relation
Σ ` τ  ρ σ, show that the relation preserves value type heads, and
then show that any well-typed coercion corresponds to a path in the
rewrite relation.
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Here is the type rewrite relation:

Σ ` τ  ρ σ Type reduction

Σ ` τ  ρ τ
RED REFL

Σ ` τ1  ρ τ2
Σ ` ψ1  N ψ2

Σ ` τ1 ψ1  ρ τ2 ψ2
RED APP

Σ ` ψi  ρi ψ
′
i

i

Σ ` H has roles ρ

Σ ` H ψ  R H ψ
′ RED TYCONAPP

Σ ` ∀ δ1.τ1  ρ ∀ δ2.τ2
RED FORALL

Σ ` τi  N σi
i

Σ ` F [τi i ] ρ F [σi
i ]

RED TYFAM

F : Ψ ∈ Σ
Ψ[i ] = [∆].F [ξ] ∼N σ
eraseΣ;Γ(ξ[ψ/∆]) t
Σ ` no conflict(Ψ,Ψ[i ], t , i)

Σ ` F [ξ[ψ/∆]] ρ σ[ψ/∆]
RED TFAXIOM

N : [a:κ].N a ∼κR σ ∈ Σ

Σ ` N τ  R σ[τ/a]
RED NTAXIOM

Σ ` τ . γ  ρ τ
RED CAST

Σ ` γ1  ρ γ2 Coercion “reduction”

Σ ` γ1  ρ γ2
RED COERCION

Lemma 9 (Simple rewrite substitution). If Σ ` τ1  ρ τ2, then
Σ ` τ1[σ/α] ρ τ2[σ/α].

Lemma 10 (Rewrite substitution). Let a be the free type variables
in a type σ. If Σ; ai :Eρiκi

i `R σ ok:

1. If Σ ` τi  ρi τ
′
i

i
, then Σ ` σ[τi/ai

i
] R σ[τ ′i /ai

i
];

2. If Σ ` τi  N τ ′i
i
, then Σ ` σ[τi/ai

i
] N σ[τ ′i /ai

i
].

Proof sketch. Along the lines of the proof for the same lemma in
Breitner et al. [2].

Lemma 11 (Sub-roling in the rewrite relation). If Σ ` τ1  N τ2,
then Σ ` τ1  ρ τ2.

Lemma 12 (RED APP/RED TYCONAPP). Assume Σ ` H has roles ρ.
If Σ ` H ψ1 ψ

′
1  R H ψ2 ψ

′
2 by RED APP, the length of ψ1 is

less than the length of ρ, then Σ ` H ψ1 ψ
′
1  R H ψ2 ψ

′
2 also by

RED TYCONAPP.

Proof sketch. Along the lines of the proof for the same lemma in
Breitner et al. [2].

Lemma 13 (Pattern). Let z be the free variables in a type pattern
ξ. We require that each variable zi is mentioned exactly once in ξ.
Then, if, for some ψ, Σ ` ξ[ψ/z ]  N τ , then there exist ψ

′
such

that τ ≈ ξ[ψ
′
/z ] and Σ ` ψ  N ψ

′
. Here, ≈ relates types that

are the same, perhaps with the exception of the existence of casts.

Proof. We proceed by induction on the structure of ξ.

Case ξ = a: There is just one free variable (a), and thus just one
type σ. We have Σ ` σ  N τ

′. Let σ′ = τ ′ and we are done.
Case ξ = ξ1 ξ2: Partition the free variables into a list z 1 that ap-

pear in ξ1 and z 2 that appear in ξ2. This partition must be pos-
sible by assumption. Similarly, partition ψ into ψ1 and ψ2. We
can see that Σ ` ξ1[ψ1/z 1] ξ2[ψ2/z 2] N τ . Thus must be by
RED APP. Thus, τ = τ1 τ2 and Σ ` ξ1[ψ1/z 1]  N τ1 and
Σ ` ξ2[ψ2/z 2] N τ2. We then use the induction hypothesis to
get ψ

′
1 and ψ

′
2 such that τ1 ≈ ξ1[ψ

′
1/z 1] and τ2 ≈ ξ2[ψ

′
2/z 2].

We conclude that ψ
′

is the combination of ψ
′
1 and ψ

′
2, undoing

the partition done earlier.
Case ξ = ξ0 c: Similar to previous case. The coercion γ that cor-

responds to the variable c can step to any other coercion, but
this does not pose a problem when constructing the ψ

′
.

Case ξ = H : Trivial.
Case ξ = ξ0 . c: Trivial.

Lemma 14 (Patterns). Let z be the free variables in a list of type
patterns ξ. Assume each variable zi is mentioned exactly once in ξ.
If, for some ψ, Σ ` ξ[ψ/z ]  N τ ′, then there exist ψ

′
such that

τ ′ ≈ ξ[ψ′/z ] and Σ ` ψ  N ψ
′
.

Proof. By induction on the length of ξ.

Base case: Trivial.
Inductive case: We partition and recombine variables as in the

ξ1 ξ2 case in the previous proof and proceed by induction.

Lemma 15 (Local diamond). If Σ ` τ  ρ σ1 and Σ ` τ  ρ σ2,
then there exists σ3 such that Σ ` σ1  ρ σ3 and Σ ` σ2  ρ σ3.

Proof. Along the lines of the proof of the same lemma in Breitner
et al. [2]. The RED FORALL rule is liberalized here, but that does
not pose a challenge in proving this lemma. In dealing with type
family applications, we use Lemma 14, noting that no two axioms
can exist with the same erased left-hand sides. This justifies the use
of ≈ in the conclusion of Lemmas 13 and 14.

Let the notation Σ ` τ1 ⇔ρ τ2 mean that there exists a σ such
that Σ ` τ1  ∗ρ σ and Σ ` τ2  ∗ρ σ.

Lemma 16 (Confluence). The rewrite relation  ρ is confluent.
That is, if Σ ` τ  ∗ρ σ1 and Σ ` τ  ∗ρ σ2, then Σ ` σ1 ⇔ρ σ2.

Proof. Confluence is a consequence of the local diamond property,
Lemma 15.

Lemma 17 (Stepping preserves value type heads). If υ1 is a value
type and Σ ` υ1  R υ2, then υ2 has the same head as υ1.

Proof. By straightforward induction.

Lemma 18 (Rewrite relation consistency). If Σ ` τ1 ⇔ρ τ2, then
τ1 and τ2 are consistent.
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Proof. If either τ1 or τ2 is not a value type, then we are trivially
done. So, we assume τ1 and τ2 are value types. By assumption,
there exists σ such that Σ ` τ1  ∗ρ σ and Σ ` τ2  ∗ρ σ.
By induction over the length of these reductions and the use of
Lemma 17, we can see that σ must have the same head as both
τ1 and τ2. Thus, τ1 and τ2 have the same head, and are thus
consistent.

Lemma 19 (Nominal rewriting preserves applications). If Σ `
τ1 ⇔N τ2, then if one of τ1 or τ2 is a type application, the other is,
too.

Proof. By inspection of the rewrite rules.

Lemma 20 (Admissibility of accessor coercions). The coercion η
in the rules below is existentially quantified. In each case, the typing
derivation for η is strictly smaller than the typing derivation for γ.
Furthermore, we assume that the types proved equal – say, τ1 and
τ2 – by γ are joinable: that is, Σ ` τ1 ⇔ρ τ2.

1. CO NTH: If Σ;∅ ` γ : H ψ ∼R H ψ
′
, ψi is a type τ ,

and H is not a newtype, then Σ;∅ ` η : τi ∼ρi τ ′i , where
Σ ` H has roles ρ.

2. CO NTHTY: If Σ;∅ ` γ : ∀ a1:εκ1.τ1 ∼ρ ∀ a2:εκ2.τ2, then
Σ;∅ ` η : κ1 ∼ρ κ2.

3. CO NTH0CO: If Σ;∅ ` γ : ∀ c1:τ1 ∼ρ′ τ ′1.σ1 ∼ρ ∀ c2:τ2 ∼ρ′
τ ′2.σ2, then Σ;∅ ` η : τ1 ∼ρ τ2.

4. CO NTH1CO: If Σ;∅ ` γ : ∀ c1:τ1 ∼ρ′ τ ′1.σ1 ∼ρ ∀ c2:τ2 ∼ρ′
τ ′2.σ2, then Σ;∅ ` η : τ ′1 ∼ρ τ ′2.

5. CO LEFT: If Σ;∅ ` γ : τ1 ψ1 ∼N τ2 ψ2, then Σ;∅ ` η :
τ1 ∼N τ2.

6. CO RIGHT: If Σ;∅ ` γ : τ1 σ1 ∼N τ2 σ2, then Σ;∅ ` η :
σ1 ∼N σ2.

7. CO INSTTY: If Σ;∅ ` γ : ∀ a1:εκ1.τ1 ∼ρ ∀ a2:εκ2.τ2,
Σ;∅ ` γ′ : σ1 ∼N σ2, Σ;∅ ` σ1 : κ1, and Σ;∅ ` σ2 : κ2,
then Σ;∅ ` η : τ1[σ1/a1] ∼ρ τ2[σ2/a2].

8. CO INSTCO: If Σ;∅ ` γ : ∀ c1:φ1.τ1 ∼ρ ∀ c2:φ2.τ2, Σ;∅ `
γ1 : φ1, and Σ;∅ ` γ2 : φ2, then Σ;∅ ` η : τ1[γ1/c1] ∼ρ
τ2[γ2/c2].

9. CO KIND: If Σ;∅ ` γ : τ1 ∼ρ τ2, Σ;∅ ` τ1 : κ1, and
Σ;∅ ` τ2 : κ2, then Σ;∅ ` η : κ1 ∼R κ2.

10. CO KAPPTY: If Σ;∅ ` γ : τ1 σ1 ∼N τ2 σ2, Σ;∅ ` σ1 : κ1,
and Σ;∅ ` σ2 : κ2, then Σ;∅ ` η : κ1 ∼N κ2.

11. CO KAPPCO1: If Σ;∅ ` γ : τ1 γ1 ∼N τ2 γ2, Σ;∅ ` γ1 :
σ1 ∼ρ σ2, and Σ;∅ ` γ2 : σ3 ∼ρ σ4, then Σ;∅ ` η : σ1 ∼N

σ3.
12. CO KAPPCO2: If Σ;∅ ` γ : τ1 γ1 ∼N τ2 γ2, Σ;∅ ` γ1 :

σ1 ∼ρ σ2, and Σ;∅ ` γ2 : σ3 ∼ρ σ4, then Σ;∅ ` η : σ2 ∼N

σ4.

Proof sketch. By induction on the typing derivation for γ, using
Lemmas 18 and 19 in the CO TRANS case.

Lemma 21 (Completeness of the rewrite relation). If Σ;∅ ` γ :
τ1 ∼ρ τ2, then Σ ` τ1 ⇔ρ τ2.

Proof. By induction on Σ;∅ ` γ : τ1 ∼ρ τ2.

Case CO REFL: Trivial –⇔ρ is reflexive.
Case CO SYM: Trivial –⇔ρ is symmetric.
Case CO TRANS: Consequence of confluence (Lemma 16).
Case CO ARROW: By induction.
Case CO TYCONAPP: By induction.
Case CO APPTY: By induction.
Case CO APPCO: By induction.

Case CO FORALLTY: Trivial.
Case CO FORALLCO: Trivial.
Case CO TYFAM: By induction.
“Accessor” coercions: By Lemma 20 and then induction.
Case CO VAR: Impossible in an empty context.
Case CO TFAXIOM: Trivial.
Case CO NTAXIOM: Trivial.
Case CO SUB: By induction and Lemma 11.
Case CO COHERENCE: Trivial.

Lemma 22 (Consistency). If ` Σ ok, then Σ is consistent.

Proof. Take a γ such that Σ;∅ ` γ : τ1 ∼R τ2. By the complete-
ness of the rewrite relation (Lemma 21), we see that Σ ` τ1 ⇔R τ2.
But, the rewrite relation consistency lemma (Lemma 18) tells us
that τ1 and τ2 are consistent. Thus, the context admits only consis-
tent coercions and is itself consistent.
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