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Abstract

Generative type abstractions – present in Haskell, OCaml, and other languages – are useful

concepts to help prevent programmer errors. They serve to create new types that are distinct

at compile time but share a run-time representation with some base type. We present a new

mechanism that allows for zero-cost conversions between generative type abstractions and

their representations, even when such types are deeply nested. We prove type safety in the

presence of these conversions and have implemented our work in GHC.

1 Introduction

Modular languages support generative type abstraction, the ability for programmers

to define application-specific types, and rely on the type system to distinguish

between these new types and their underlying representations. Type abstraction

is a powerful tool for programmers, enabling both flexibility (implementors can

change representations) and security (implementors can maintain invariants about

representations). Typed languages provide these mechanisms with zero run-time

cost – there should be no performance penalty for creating abstractions – using

mechanisms such as ML’s module system (Milner et al., 1997) and Haskell’s newtype

declaration (Marlow, 2010).

For example, a Haskell programmer might create an abstract type for HTML

data, representing them as Strings (Figure 1). Although String values use the same

patterns of bits in memory as HTML values, the two types are distinct. That is, a

String will not be accepted by a function expecting an HTML. The data constructor

MkHTML converts a String to an HTML (see function text), whilst using MkHTML in

a pattern converts in the other direction (see function unHTML). By exporting the
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Fig. 1. An abstraction for HTML values.

type HTML, but not its data constructor, module Html ensures that the type HTML

is abstract – clients cannot make arbitrary strings into HTML – and thereby prevent

cross-site scripting attacks.

Using newtypes for abstraction in Haskell has always suffered from an em-

barrassing difficulty. Suppose that in the module Html, the programmer wants to

break HTML data into a list of lines, using the standard Haskell library function

lines :: String → [String]:

linesH :: HTML → [HTML]

linesH h = map MkHTML (lines (unHTML h))

To get the resulting [HTML], we are forced to map MkHTML over the list. Opera-

tionally, this map is the identity function – the run-time representation of [String]

is identical to [HTML] – but it will carry a run-time cost nevertheless. The optimiser

in the Glasgow Haskell Compiler (GHC) is powerless to fix the problem because

it works over a typed intermediate language; the MkHTML constructor changes the

type of its operand, and hence cannot be optimised away. There is nothing that the

programmer can do to prevent this run-time cost. What has become of the claim of

zero-overhead abstraction?

In this paper, we describe a robust, simple mechanism that programmers can use

to solve this problem, making the following contributions:

• We describe the design of safe coercions (Section 2), which introduces the

function:

coerce :: Coercible a b ⇒ a → b

and the new constraint Coercible. This function performs a zero-cost conver-

sion between two types a and b that have the same representation. The crucial

question becomes for which types is the Coercible constraint satisfiable? We

describe how the constraint can be formed and used in Section 2.

• We formalise Coercible by translation into GHC’s intermediate language

System FC, augmented with the concept of roles (Section 2.2), adapted from

prior work (Weirich et al., 2011). One new contribution of this work is a

simplification of the roles idea; we formalise this simpler system and give the

usual statements of preservation and progress in Section 4.

• The appendices contain a complete proof of type safety and type erasure for

the variant of System FC described in this paper. This proof is the most

http://journals.cambridge.org
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detailed version of a proof of the safety System FC we are aware of; it serves

well as a template for proofs about extensions to System FC. Although the

proof broadly echoes prior work, we present it as a novel contribution in its

level of detail.

• Adding safe coercions to the source language raises new issues for abstract

types, and for the coherence of type elaboration. We articulate the issues, and

introduce role annotations to solve them (Section 3).

• It would be too onerous to insist on programmer-supplied role annotations

for every type, so we give a role inference algorithm in Section 4.6.

• The precise algorithm used to simplify and solve Coercible constraints is

subtle. It appears in Section 5.

• To support our claim of practical utility, we have implemented the whole

scheme in GHC (Section 6), and evaluated it against thousands of Haskell

libraries (Section 6.5). Our work also finally resolves a notorious and long-

standing bug in GHC (#1496), which concerns the interaction of newtype

coercions with type families (Section 6.1).

We build on earlier work on roles (Weirich et al., 2011), which offered a very

expressive, but very complicated, system of roles. In this paper, we find a sweet spot

offering a considerably simpler system in exchange for a minor loss of expressiveness.

This paper is a revised and expanded version of our ICFP’14 paper (Breitner et al.,

2014a), and describes the implementation as it has been refined since the original

publication (Section 5).

As this work demonstrates, the interactions between type abstraction and ad-

vanced type system features, such as type families and generalised algebraic data

types (GADTs), are subtle. Although we focus on Haskell and System FC here,

the ability to create and enforce zero-cost type abstraction is not unique to Haskell

– notably the ML module system also provides this capability, and more. As a

result, OCaml developers are now grappling with similar difficulties. We discuss the

connection between roles and OCaml’s variance annotations (Section 7), as well as

other related work.

2 The design and interface of Coercible

We begin by focussing exclusively on the programmer’s-eye-view of safe coercions.

His entry point to the story is the function:

coerce :: Coercible a b ⇒ a → b

that allows him to convert values between two types a and b. This is reminiscent

of the infamous function unsafeCoerce :: a → b, which likewise converts between

two types, with the crucial difference that coerce works only if it is safe to do so,

i.e., when the compiler can determine that the conversion will not compromise type

safety. This relation between the type a and b is expressed by the new primitive

constraint Coercible a b. As a constraint, it looks like a type class, but shares only

the syntax and the name space with them.

The key principle is this: If two types σ and τ are related by Coercible σ τ, then

σ and τ have bit-for-bit identical run-time representations. Moreover, as you can see
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Fig. 2. Coercible relates types with identical run-time representation.

from the type of coerce, if Coercible σ τ holds then coerce can convert a value of

type σ to one of type τ with no runtime cost. And that’s it!

The crucial question, to which we devote the rest of this section, becomes this:

exactly when does Coercible σ τ hold? To whet your appetite consider these

declarations:

newtype Age = MkAge Int

newtype BigAge = MkBig Age

newtype Nat = MkNat Int

newtype IntRange = MkIR (Int,Int)

Here are some coercions that hold, so that a single call to coerce suffices to convert

between the two types:

• Coercible Int Age: We can coerce from Int to Age at zero cost, as this

corresponds to simply using the MkAge constructor,

• Coercible Age Int: and the reverse, as if we were pattern matching on MkAge,

• Coercible BigAge Int: We can unwrap two steps at once,

• Coercible BigAge Nat: and coerce between different newtypes that happen to

have the same representation,

• Coercible [Age] [Int]: We can lift coercions over lists,

• Coercible (Either Int Age) (Either Int Int): and over Either,

• Coercible (Either Int Age) (Either Age Int): It also works if the first argument

of Either must be coerced in one direction, and the second in the other,

• Coercible (Int → Age) (Age → Int): All this works over function arrows too,

• Coercible (Age, BigAge) IntRange: And even quite complex coercions like

this are handled with one call to coerce.

Figure 2 visualises these coercions and shows that Coercible is constructed to be

an equivalence relation: It partitions all Haskell types into equivalence classes, so

that in each such class, every type has the same run-time representation, and one

can convert between any two types that are in the same group, in either direction,

with a single call to coerce; but not between types of different groups.

http://journals.cambridge.org
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Fig. 3. Coercible formation rules (pragmatic summary).

The rest of this section describes the basic rules for determining when one type

is Coercible to another; see Figure 3 for a concise summary. The algorithm used

in GHC to actually solve Coercible constraints is described in detail in Section 5.

Figure 5 contains the full list of coercion formation rules, albeit in the language of

System FC instead of Haskell.

2.1 Coercing newtypes

We expect Coercible to relate a newtype with its base type; this is the most obvious

rule for Coercible. In our example, this solves the following constraints:

• Coercible Int Age

• Coercible Age BigAge

• Coercible (Int,Int) IntRange

Notice that each of these rules unwraps just one layer of the newtype, so we call

them the unwrapping rules.

The newtype-unwrapping rules (i.e., (1) in Figure 3) are available only if the

corresponding newtype data constructor (e.g., MkNT) is in scope; this is required to

preserve abstraction, as we explain in Section 3.1.

2.2 Type constructors and roles

The type that we want to coerce might appear as an argument to a type constructor.

A type constructor is what forms a parameterised type, and could be a data type,

newtype, the function type, or a built-in data type like a tuple or IO. To coerce

a composite type, each type constructor has its lifting rule, as shown in Figure 3,

which lifts coercions through the type constructor.

The shape of the lifting rule depends on the so-called roles of the type constructor’s

parameters. Each type parameter of a type constructor has one of the three possible

http://journals.cambridge.org
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roles: representational, phantom, and nominal. The following subsections explain the

meaning of these roles, and how the roles ensure that lifting rules do not give rise to

coercions between types with different run-time representations, which would violate

type safety.

A role annotation such as

type role Either representational representational

is used to assign the roles. Once defined, the roles of a type constructor are the same

in every scope, regardless of whether the concrete definition of that type is available

in that scope. The compiler checks if these assignments are compatible with how the

parameter is used in the definition of the type constructor (Section 4.3). Without a

role annotation, a role inference algorithm (Section 4.6) calculates the most liberal

allowed role assignment (which, we prove, must be unique), so in practice, role

annotations are rarely needed and only used in special circumstances (Section 3.1).

We write out some superfluous role annotations to aid the reader.

2.3 Coercing representational type parameters

The most common role is representational. It is the role that is assigned to the type

parameters of ordinary newtypes and data types that do not discern the actual

choice of the type parameter. For example:

type role Maybe representational

type role [ ] representational

type role Either representational representational

The Coercible rule for these type constructors are:

� If Coercible τ σ then Coercible (Maybe τ) (Maybe σ).

� If Coercible τ σ then Coercible [τ] [σ].

� If Coercible τ1 σ1 and Coercible τ2 σ2 then Coercible (Either τ1 τ2) (Either

σ1 σ2).

These rules are just as you would expect: for example, the type Maybe τ and

Maybe σ have the same run-time representation if and only if τ and σ have the

same representation.

Most primitive type constructors also have representational roles for their argu-

ments. For example, the domain and co-domain of arrow types are representational,

as if we had

type role ( → ) representational representational,

giving rise to the following Coercible rule:

� If Coercible τ1 σ1 and Coercible τ2 σ2 then Coercible (τ1 → τ2) (σ1 → σ2).

As another example, the type IORef has a representational parameter, so expres-

sions of type IORef Int can be converted to type IORef Age for zero cost (and

outside of the IO monad).

http://journals.cambridge.org
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Returning to the introduction, we can now write linesH very directly, thus:

linesH :: HTML → [HTML]

linesH = coerce lines

In this case, the call to coerce gives rise to a constraint Coercible (String →
[String]) (HTML → [HTML]), which gets simplified to Coercible String HTML using

the lifting rules for arrow and list types, and then solved by the unwrapping rule for

the newtype HTML.

2.4 Coercing phantom type parameters

A type parameter has a phantom role if it does not occur at all in the definition of

the type, or if it does, then only as a phantom parameter of another type constructor.

For example, these declarations

data Phantom b = Phantom

data NestedPhantom b = MkNP [Phantom b] | SomethingElse

both have parameter b at a phantom role:

type role Phantom phantom

type role NestedPhantom phantom

When do the types Phantom τ and Phantom σ have the same run-time represen-

tation? Always! Therefore, we have the rules:

� Coercible (Phantom τ) (Phantom σ),

� Coercible (NestedPhantom τ) (NestedPhantom σ).

and coerce can be used to change the phantom parameter arbitrarily.

Such a change can defeat the purpose of the phantom type, but that is an issue

of abstraction, not of type safety, and addressed in Section 3.1.

2.5 Coercing nominal type parameters

In contrast, the nominal role induces the strictest preconditions for Coercible rules.

This role is assigned to a parameter that possibly affects the run-time representation

of a type, commonly because it is passed to a type family. For example, consider

the following code:

type family EncData a where

EncData String = (ByteString, Encoding)

EncData HTML = ByteString

type role EncData nominal

data Encoding = ...

data EncText a = MkET (EncData a)

type role EncText nominal

http://journals.cambridge.org
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Even though we have Coercible HTML String, it would be wrong to accept the

constraint Coercible (EncText HTML) (EncText String), because these two types

have quite different run-time representations! Therefore, there are no rules that

change a nominal parameter of a type constructor.

All parameters of a type family1 have nominal role, because they could be

inspected by the type family instances. For similar reasons, the non-uniform

parameters to GADTs are also required to be nominal. Type classes also use

nominal role for their type parameters; see Section 3.2.

2.6 Coercing multiple type parameters

A type constructor can have multiple type parameters, each at a different role. In

that case, an appropriate constraint for each type parameter is used:

data Params r p n = Con1 (Maybe r) | Con2 (EncData n)

type role Params representational phantom nominal

Hence, following (3) in Figure 3, we get:

� If Coercible τ1 τ2 then Coercible (Params τ1 σ1 σ0) (Params τ2 σ2 σ0).

2.7 Inverting the lifting rule

For a data type constructor such as Maybe, there is only one rule that concludes

that Coercible (Maybe τ) (Maybe σ), namely the lifting rule. As that rule has the

assumption that Coercible τ σ holds, we can invert that rule and we can conclude

Coercible τ σ from Coercible (Maybe τ) (Maybe σ). In other words, Maybe is

injective with respect to coercibility. This is the decomposition rule (elided from

Figure 3), and it can be used for any parameter of a non-newtype type constructor,

e.g.,:

• If Coercible (Maybe τ) (Maybe σ) then Coercible τ σ.

• If Coercible [τ] [σ] then Coercible τ σ.

• If Coercible (Either τ1 τ2) (Either σ1 σ2) then Coercible τ1 σ1.

• If Coercible (Either τ1 τ2) (Either σ1 σ2) then Coercible τ2 σ2.

• If Coercible (τ1 → τ2) (σ1 → σ2) Coercible τ1 σ1.

• If Coercible (τ1 → τ2) (σ1 → σ2) Coercible τ2 σ2.

The general rule follows:

� Suppose non-newtype T has parameters with roles representational, phantom,

and nominal, respectively. If Coercible (T τ1 τ2 τ3) (T σ1 σ2 σ3), then Coercible

τ1 σ1 and τ3 ∼ σ3, where ∼ is Haskell’s notation for type equality.

The practical impact of adding the decomposition rule is small, as programs

that require this rule are likely very rare. Nevertheless, the rule is sound and such

1 Or data family. See Chakravarty et al. (2005b) for more information.
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programs might exist, so we include it. Furthermore, the formalism does need this

decomposition in order to define a type-safe small-step semantics (cf. Appendix A.3).

Why do we have to exclude newtypes from the decomposition rule? Although

they have lifting rules, Coercible constraints between them could also have been

created using the unwrapping rule, so the argument by rule inversion above does

not hold. In other words, newtypes are not injective with respect to coercibility.

Indeed, if we assumed such a decomposition rule, we could derive invalid Coercible

constraints. Consider the following code, where the programmer explicitly uses a

role annotation (see Section 3.1) to set the role of the argument to representational:

newtype TaggedInt a = MkTI Int

type role TaggedInt representational

The explicit role annotation is fine, as explained in Section 4.3. Using the unwrapping

rule, together with transitivity and symmetry, we can conclude that Coercible

(TaggedInt Bool) (TaggedInt Char) holds. If we had a decomposition rule, we would

now have Coercible Bool Char.

2.8 Supporting higher order polymorphism

So far, we have only seen Coercible applied to types of kind ∗, but that is not

sufficient to support all coercions that we might want. For example, consider a

monad transformer such as

data MaybeT m a = MaybeT (m (Maybe a))

and a newtype that wraps another monad, e.g.,

newtype MyIO a = MyIO (IO a)

It is reasonable to expect that Coercible (MaybeT MyIO a) (MaybeT IO a) can be

derived. Using the lifting rule for MaybeT, this requires Coercible MyIO IO to hold.

Therefore, for a newtype declaration as the one above, GHC will η-reduce the

unwrapping rule to say Coercible IO MyIO instead of Coercible (IO a) (MyIO a).

Using symmetry, this allows us to solve Coercible (MaybeT MyIO a) (MaybeT IO

a).

Of course, this η-reduction must not prevent us from solving, for example,

Coercible (MyIO Int) (IO Int). Therefore, we have the type application rule that allows

us to use Coercible relations between types of higher kinds such as ∗ → ∗:

� If Coercible τ σ, where τ, σ :: κ1 → κ2, then Coercible (τ τ0) (σ τ0) for any

τ0.

What about the very similar-looking rule “If Coercible τ σ then Coercible (τ0 τ)

(τ0 σ)”, where τ0 is a type variable (of kind κ1 → κ2)? Such a lifting rule for type

variables would be unsound. For example, the variable could be instantiated with a

type constructor that has a nominal parameter, such as EncText, which would allow

us to coerce (erroneously) between EncText HTML and EncText String.

Therefore, the parameters of type variables are always assumed to have nominal

role, and no lifting rule is available. This inability to abstract over types whilst

http://journals.cambridge.org
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retaining information about their parameter’s roles has some practical consequences;

see Section 8.

3 Roles, abstraction, and coherence

The purpose of the HTML type from the introduction is to prevent the confusion

of unescaped strings and HTML fragments. However, because these types have

the same representation, confusing them does not lead to unsoundness in the type

system. Instead, programs that make this mistake do not preserve the user-defined

abstraction of the HTML type.

Whilst the previous section describes how the Coercible formation rules ensure

that Coercible types share runtime representations, this section discusses two other

properties that guide the design of this mechanism: type abstraction (Section 3.1)

and class coherence (Section 3.2).

3.1 Preserving abstraction

Haskell programmers define abstract types by hiding the constructors of newtypes

and datatypes. In this case, the creation of values of a type like HTML is controlled

by a code in a single module, so programmers can establish invariants about those

values. Because coerce can also construct values of type HTML, the unwrapping

coercion associated with this newtype is available if and only if the newtype

constructor MkHTML is in scope.

However, what about the interaction between the lifting rule and type abstraction?

It turns out that, even when module authors have carefully hidden the constructors

of a type, sometimes they want to make the lifting rule available for that type, but

at other times they would like to restrict it.

To illustrate the former case, we would like to permit coercions between IORef

HTML to IORef String, even though IORef is an abstract type. Similarly, consider a

library for non-empty lists:

module NonEmptyListLib( NE, singleton, ... ) where

data NE a = MkNE [a]

singleton :: a → NE a

... etc...

The type must be exported abstractly; otherwise, the non-empty property can be

broken by its users. Nevertheless, lifting a coercion through NE, i.e., coercing NE

HTML to NE String, does not break this invariant.

To illustrate the case where one would want to restrict the lifting rule, consider

the data type Map k v. This type implements an efficient finite map from keys of

type k to values of type v using an internal representation based on a balanced tree,

something like this:

data Map k v = Leaf | Node k v (Map k v) (Map k v)

http://journals.cambridge.org
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It would be disastrous if the user were allowed to coerce from (Map Age v) to

(Map Int v), because a valid tree with regard to the ordering of Age might be

bogus when using the ordering of Int. Functions that manipulate Maps use an Ord k

constraint and thus use the Ord instance for the type k; nothing in Haskell requires

that instances Ord Int and Ord Age behave similarly.

To prevent coercing (Map Age v) to (Map Int v), the programmer would explicitly

give a role annotation that differs from the default annotation, namely:

type role Map nominal representational

As explained in Section 2.2, these roles produce the abstraction-preserving lifting

rule:

� If Coercible a b then Coercible (Map k a) (Map k b)

which allows the coercion from Map k HTML to Map k String.

Note that in the declaration of Map, the parameters k and v are used in exactly

the same way, so this distinction cannot be made by the compiler; it can only

be specified by the programmer. However, the compiler ensures that programmer-

specified role annotations cannot violate type safety: If the annotation specifies an

unsafe role, the compiler will reject the program.

3.2 Preserving class coherence

Another property of Haskell, independent of type-safety, is the coherence of type

classes. There should only ever be one class instance for a particular class and type.

We call this desirable property coherence. Without careful design coerce could be

used to create incoherence.

To demonstrate that, consider the type class Show and two of its instances:

class Show a where

show :: a → String

instance Show String where

show s = "\"" ++ s ++ "\""
instance Show HTML where

show (MkHTML s) = "<html>" ++ s ++ "</html>"

The following (non-Haskell98) data type reifies a Show instance as a value:

data HowToShow a where

MkHTS :: Show a ⇒ HowToShow a

showH :: HowToShow a → a → String

showH MkHTS x = show x

Here, showH pattern-matches on a HowToShow value, and uses the instance stored

inside it to obtain the show method.

http://journals.cambridge.org
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If we are not careful, we could break the coherence of the Show type class:

stringShow :: HowToShow String

stringShow = MkHTS

htmlShow :: HowToShow HTML

htmlShow = MkHTS

badShow :: HowToShow HTML

badShow = coerce stringShow

λ> putStrLn (showH stringShow "Hello")

"Hello"
λ> putStrLn (showH htmlShow (MkHTML "Hello"))

<html>Hello</html>

λ> putStrLn (showH badShow (MkHTML "Hello"))
"Hello"

In the last interaction, we applied show to a value of type HTML, but the Show

instance for String (coerced to (Show HTML)) was used. This example shows the

problem that derives from the lack of coherence – we used coerce to construct a

second instance of the Show class for the HTML type.

To avoid this, the parameters of a type class can only be assigned a nominal

role.2 Accordingly, the parameter of HowToShow is also assigned a nominal role,

preventing the coercion between (HowToShow HTML) and (HowToShow String).

4 Ensuring type safety: system FC with roles

Haskell is a large and complicated language. How do we know that the ideas

sketched above in source language terms actually produce a sound type system?

What, precisely, do roles mean, and when precisely are two types equal? In this

section, we answer these questions for GHC’s small, statically typed intermediate

language, GHC Core. Every Haskell program is translated into Core, and we can

typecheck Core to reassure ourselves that the (large, complicated) front end accepts

only good programs.

Core is an implementation of a calculus called System FC, itself an extension of

the classical Girard/Reynolds System F. The version of FC that we develop in this

paper derives from much prior work.3 However, for clarity, we give a self-contained

description of the system and do not assume familiarity with previous versions.

Figure 4 gives the syntax of System FC. The starting point is a conventional typed,

polymorphic lambda calculus inspired by System F with algebraic datatypes. We

therefore elide most of the syntax of terms e, giving the typing judgement for terms

2 A role annotation can be used to override this default, but the user must specify GHC’s
-XIncoherentInstances extension to do so.

3 Several versions of System FC are described in published work. Some of these variants have had
decorations to the FC name, such as FC2 or F

↑
C. We do not make these distinctions in the present

work, referring instead to all of these systems – in fact, one evolving system – as “FC”.
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Fig. 4. An excerpt of the grammar of System FC.

in Appendix A.2. Types τ are also conventional, except that we add (saturated) type-

family applications F (τ), to reflect their addition to source Haskell (Chakravarty

et al. 2005a, 2005b).4 Types are classified by kinds κ as usual; the kinding judgement

Γ � τ : κ appears in Appendix A.2. This judgement is syntax directed: From the

context Γ and type τ, we can determine the unique kind κ (if one exists). To avoid

clutter, we use only monomorphic kinds, but it is easy to add kind polymorphism

along the lines of Yorgey et al. (2012), and our implementation does so.

FC is an explicitly typed language. By using System F’s explicit type abstraction

and application, an FC program can by typechecked by a simple, syntax-directed

algorithm, despite the presence of impredicative polymorphism. Type inference is

not required.

4.1 Roles and casts

FC’s distinctive feature is a type-safe cast (e�γ) (Figure 4), which uses a coercion γ to

cast a term from one type to another. The explicit coercions and casts in System FC

4 Type families must always appear saturated – even in System FC – because otherwise we would be
unable to admit the left and right coercions. See also Section 4.2.7.
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ensure that type checking remains simple and syntax-directed, despite the presence

of GADTs and type families.

A coercion γ is a witness or proof of the equality of two types. Coercions are

classified by the judgement:

Γ � γ : τ ∼κ
ρ σ

given in Figure 5, and pronounced “in type environment Γ the coercion γ witnesses

that the types τ and σ both have kind κ, and are equal at role ρ”.

The notion of being “equal at role ρ” is the important feature of this paper; it is

a development of earlier work, as Section 7 describes. There are precisely three roles

(see Figure 4), written N, R, and P, with the following meaning:

Nominal equality, written ∼N, is the equality that the source Haskell type checker

reasons about. When a Haskell programmer says that two Haskell types are the

“same”, we mean that the types are nominally equal. Thus, we can say that Int ∼N

Int but not Int ∼N Age. Type families introduce new nominal equalities. So, if we

have type instance F Int = Bool, then F Int ∼N Bool.

Representational equality, written ∼R, holds between two types that share the same

run-time representation. Because all types that are nominally equal also share

the same representation, nominal equality is a subset of representational equality.

Continuing the example from the introduction, HTML ∼R String. A Coercible

constraint in Haskell corresponds to a proposition of representational equality in

FC.

Phantom equality, written ∼P, holds between any two types, whatsoever. It may

seem odd that we produce and consume proofs of this “equality”, but doing

so keeps the system uniform and easier to reason about. The idea of phantom

equality is new in this work, and it allows for zero-cost conversions amongst types

with phantom parameters.

We can now give the typing rule for type-safe cast:

Γ � e : τ1
Γ � γ : τ1 ∼R τ2

Γ � e � γ : τ2
Tm Cast

The coercion γ must be a proof of representational equality, as witnessed by the R

subscript to the result of the coercion typing premise. This makes sense: we can

treat an expression of one type τ1 as an expression of some other type τ2 when those

types share a representation.

4.2 Coercions

Coercions (Figure 4) and their typing rules (Figure 5) are the heart of System

FC. The basic typing judgement for coercions is Γ � γ : τ ∼κ
ρ σ. This judgement

is also syntax directed: When this judgement holds we can determine the unique

proposition τ ∼κ
ρ σ that is justified by a particular coercion γ in a given context

Γ. Furthermore, in this case, τ and σ must be well formed and have the same
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Fig. 5. Γ � γ : φ: Formation rules for coercions.

kind κ. We often omit the kind annotation in our presentation when it is not

important.

We can understand the typing rules in Figure 5, by thinking about the equalities

that they define.

4.2.1 Nominal equality implies representational equality

If we have a proof that two types are nominally equal, then they are in particular

also representationally equal. This intuition is expressed by the sub operator, and

the rule Co Sub. With this, the above type-safe cast using Tm Cast can also make

use of nominal equalities.
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4.2.2 Phantom equality relates all types

The coercion form 〈τ, σ〉P (shown in rule Co Phantom) proves that any two types τ

and σ are equal at role P.

4.2.3 Equality is an equivalence relation

Equality is an equivalence relation at all three roles. Symmetry (rule Co Sym) and

transitivity (Co Trans) work for any role ρ. Reflexivity is modelled directly only

for nominal equality, by way of Co Refl. It also holds at the other roles: We can

derive representational reflexivity using sub, and phantom equality trivially includes

reflexivity through rule Co Phantom.

4.2.4 Axioms for equality

Each newtype declaration and type-family instance gives rise to an axiom; newtypes

give rise to representational axioms, and type-family instances give rise to nominal

axioms.5 For example, the declarations:

newtype HTML = MkHTML String

newtype EitherInt a = MkEI (Either a Int)

type family F [a] = Maybe a

produce the axioms:

C1 : HTML ∼R String,

C2 : [a:�].EitherInt a ∼N Either a Int,

C3 : [a:�].F ([a]) ∼N Maybe a .

Axiom C1 states that HTML is representationally equal to String, just as Axiom C2

states that EitherInt σ is representationally equal to Either τ Int for any type σ: They

are distinct types, but share a common representation. Axiom C3 states that F ([σ])

is nominally equal to Maybe σ: The two are considered to be the same type by the

type checker).

In C2 and C3, the notation “[a:�].” binds a in the types being equated. Uses of

these axioms are governed by the rule Co Axiom. Axioms must always appear fully

applied, and we assume that they live in a global context, separate from the local

context Γ.

4.2.5 Equality can be abstracted

Just as one can abstract over types and values in System F, one can also abstract

over equality proofs in FC. To this end, FC terms (Figure 4) include coercion

abstraction λc:φ.e and application e γ. These are the introduction and elimination

forms for the coercion abstraction arrow (⇒), just as ordinary value abstraction and

5 For simplicity, we restrict ourselves to open-type families. Closed-type families (Eisenberg et al., 2014)
could also be accommodated.
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Fig. 6. Congruence and roles example code.

application are the introduction and elimination forms for ordinary arrow (→) (see

Appendix A.2).

A coercion abstraction binds a coercion variable c:φ. These variables can occur

only in coercions; see rule Co Var. Coercion variables can also be bound in the

patterns of a case expression, which supports GADTs.

4.2.6 Equality is congruent

Congruence of type application. Before diving into the rules themselves, it is helpful

to consider some examples of how we want congruence and roles to interact.

Let’s consider the definitions in Figure 6. The role annotation here is superfluous,

as nominal is the only legal role for T. With these definitions in hand, what

equalities should be derivable? (Recall the intuitive meanings of the different roles

in Section 4.1.)

1. Should Maybe HTML ∼R Maybe String hold?

Yes, it should. The type parameter to Maybe has a representational role, so

it makes sense that two Maybes built out of representationally equal types

should be representationally equal.

2. Should Maybe HTML ∼N Maybe String hold?

Certainly not. These two types are entirely distinct to Haskell programmers

and its type checker.

3. Should T HTML ∼R T String hold?

Certainly not. We can see, by unfolding the definition for T, that the represen-

tations of the two types are different.

4. Should a HTML ∼R a String hold, for a type variable a?

It depends on the instantiation of a! If a becomes Maybe, then “yes”; if a

becomes T, then “no”. Since we may be abstracting over a , we do not know

which of the two will happen, so we take the conservative stance and say that

a HTML ∼R a String does not hold.

This last point is critical. The alternative is to express a ’s argument roles in its

kind, but that leads to a more complicated system; see related work in Section 7.

A distinguishing feature of this paper is the simplification we obtain by attributing

roles only to the arguments to type constants (H , in the grammar), and not to
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abstracted type variables. We lose a little expressiveness; see Sections 7.1 and 8.1 for

discussion and examples.

To support both (1) and (4) requires two coercion forms and corresponding rules:

• The coercion form H (γ) has an explicit type constant at its head. This form

always proves a representational equality, and it requires input coercions of

the roles designated by the roles of H ’s parameters (rule Co TyConApp). The

roles function gives the list of roles assigned to H ’s parameters, as explained

in Section 2.2. We allow ρ to be a prefix of roles(H ) to accommodate partially

applied type constants. The H (γ) form allows coercions like in case (1) but

not case (4).

• The coercion form γ1 γ2 does not have an explicit type constant, so we must

use the conservative treatment of roles discussed above. Rule Co App therefore

requires γ2 to be a nominal coercion, though the role of γ1 carries through to

the application γ1 γ2. This form addresses case (4).

What if we wish to prove a nominal equality such as Maybe (FString) ∼N Maybe

Int? We can’t use the H (γ) form, which proves only representational equality, but

we can use the γ1 γ2 form, with 〈Maybe〉 for γ1.

Congruence of type family application. Rule Co TyFam proves the equality of two

type-family applications. It requires nominal coercions amongst all the arguments

because type families can inspect their (type) arguments and branch on them. It

would be unsound to derive an equality between F String and F HTML.

Congruence of polymorphic types. The rule Co ForAll works for any role ρ;

polymorphism and roles do not interact.

4.2.7 Equality can be decomposed

If we have a proof of Maybe σ ∼ρ Maybe τ, with type applications on both sides,

should we be able to get a proof of σ ∼ρ τ, by decomposing the equality? Yes, in

this case, but we must be careful here as well.

The formation rule Co TyConApp has an (almost) inverse in the rule Co Nth,

and the formation rule Co App has an (almost) inverse in the rules Co Left and

Co Right; these rule can decompose some type applications. For various reasons,

though, these must not be complete inverses:

• The rule Co Nth is not allowed to decompose equalities amongst newtypes.

Why? Because nth witnesses injectivity and newtypes are not necessarily

injective with respect to representational equality. (Like all datatypes in Haskell,

newtypes are injective with respect to nominal equality.) For example, consider

these definitions:

data Phant a = MkPhant

type role Phant phantom

newtype App a b = MkApp (a b)

type role App representational nominal
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So we have, roles(App) = R,N. Yet, we can see the following chain of equalities:

App Phant Int ∼R Phant Int ∼R Phant Bool ∼R App Phant Bool.

By transitivity, we can derive a coercion γ witnessing

App Phant Int ∼R App Phant Bool.

If we could use nth2 on γ, we would get Int ∼N Bool: disaster! We eliminate

this possibility by preventing nth on newtypes.

• The rules Co Left and Co Right require and produce only nominal coercions,

and are not allowed to operate on representational coercions. Consider this

newtype to see why this must be so:

newtype EitherInt a = MkEI (Either a Int)

This definition yields an axiom showing that, for all a, EitherInt a ∼R (Either

a Int). Suppose we could apply left and right to coercions formed from this

axiom. Using left would get us a proof of EitherInt ∼R (Either a), which could

then be used to show, say, (Either Char) ∼R (Either Bool) and then (using

nth) Char ∼N Bool. Using right would get us a proof of a ∼R Int, for any a.

These are both clearly disastrous. So, we forbid using these coercion formers

on representational coercions.6

• The rule Co Nth is restricted to decompose only representational coercions,

and never nominal ones. This is not because it would be unsound otherwise,

but as nominal coercions can be decomposed via left and right, there is simply

no need for using nth on nominal coercions, and as a design decision, we left

them out.

Thankfully, polymorphism and roles play well together, and the Co Inst rule

(inverse to Co ForAll) shows quite straightforwardly that, if two polytypes are

equal, then so are the instantiated types.

There is no decomposition form for type family applications: knowing that F (τ)

is equal to F (σ) tells us nothing whatsoever about the relationship between τ and σ.

4.3 Role attribution for type constants

In System FC, we assume an unwritten global environment of top-level constants:

data types, type families, axioms, and so on. For a data type H , for example, this

environment gives the kind of H , the types of H ’s data constructors, and the roles of

H ’s parameters. Abstract data types, imported from other modules, are data types

that include no data constructors in the global environment. Clearly, this global

environment must be internally consistent. For example, a data constructor K must

return a value of type D τ, where D is a data type; K ’s type must be well-kinded,

and that kind must be consistent with D’s kind.

6 Although the forms left and right were originally part of FC, for simplicity, they were omitted in
previous papers (Weirich et al., 2011) and in the implementation (GHC 7.2-7.6). However, Haskell
users (e.g., Trac #7205) reported that some programs no longer type checked after this change, so
these forms were re-introduced in GHC 7.8.
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Fig. 7. Rules asserting a correct assignment of roles to data types.

All of this is standard except for roles. It is essential that the roles of D’s

parameters, roles(D), are consistent with D’s definition. For example, it would be

wrong for the global environment to claim that Maybe’s parameter is phantom

because then we could use Co Phantom and Co TyConApp to prove the obviously

wrong coercion Maybe Int ∼R Maybe Bool.

We use the judgement ρ |= H , to mean “ρ are suitable roles for the parameters of

H ”, and in our proof of type safety, we assume that roles(H ) |= H for all H . The

rules for this judgement and two auxiliary judgements appear in Figure 7. Note that

this judgement defines a relation between roles and data types. Our role inference

algorithm (Section 4.6) determines the most permissible roles for this relation, but
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often other, less permissive roles, such as those specified by role annotations, are

also included by this relation.

Start with Roles Newtype. Recall that a newtype declaration for N gives rise to

an axiom C : [a:κ].N a ∼R σ. The rule says that roles ρ are acceptable for N if each

parameter ai is used in σ in a way consistent with ρi , expressed using the auxiliary

judgement a:ρ � σ : R.

The key auxiliary judgement Ω � τ : ρ checks that the type variables in τ are

used in a way consistent with their roles specified in Ω, when considered at role ρ.

More precisely, the main purpose of the judgement is to guarantee that if Ω � τ : ρ

holds, then for every a:ρ′ ∈ Ω and σ1 ∼ρ′ σ2, we obtain τ[σ1/a] ∼ρ τ[σ2/a]. This is

a consequence of the lifting lemma (Lemma 33). Unlike in many typing judgements,

the role ρ (as well as Ω) is an input to this judgement, not an output. With this

in mind, the rules for the auxiliary judgement are straightforward. For example,

RTy TyFam says that the argument types of a type family application are used at

nominal role. The variable rule, RTy Var, allows a variable to be assigned a more

restrictive role (via the sub-role judgement) than required, which is needed both

for multiple occurrences of the same variable, and to account for role signatures.

Note that rules RTy TyConApp and RTy App overlap – this judgement is not

syntax-directed.

Returning to our original judgement ρ |= H , Roles Data deals with algebraic

data types D, by checking roles in each of its data constructors K . The type

of a constructor is parameterised by universal type variables a , existential type

variables b, coercions with types φ – which are used when encoding GADTs – and

term-level arguments with types σ. For each constructor, we must examine each

proposition φ and each term-level argument type σ, checking to make sure that each

is used at a representational role. Why check for a representational role specifically?

Because roles is used in Co TyConApp, which produces a representational coercion.

In other words, we must make sure that each term-level argument appears at a

representational role within the type of each constructor K for Co TyConApp to

be sound.

The function type constructors (→) and (⇒) have representational roles: Functions

care about representational equality but never branch on the nominal identity of a

type. (For example, functions always treat HTML and String identically.)

Finally, we see that the roles of the arguments to an equality proposition match

the role of the proposition:

• It cannot have a less strict role, as otherwise we could use Int ∼P Bool to

change Int ∼N Int into Int ∼N Bool, which would not be sound.

• On the other hand, there is no point in using a stricter role: The ability to

use γ1 : τ1 ∼ρ τ2 to change γ2 : τ1 ∼ρ τ3 into τ2 ∼ρ τ3 is already given by the

coercion expression sym γ1 � γ2.

These definitions lead to a powerful theorem:

Theorem (Roles assignment narrowing). If ρ |= H, where H is a data type or newtype,

and ρ′ is such that ρ′
i � ρi (for ρi ∈ ρ and ρ′

i ∈ ρ′), then ρ′ |= H.
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Proof. Straightforward induction on Ω � τ : ρ.

This theorem states that, given a sound role assignment for H , any more

restrictive role assignment is also sound. This property of our system here is one

of its distinguishing characteristics from our prior work on roles – see the end of

Section 8.1.1 for discussion.

4.4 Progress and preservation

The preceding discussion gave several non-obvious examples where admitting too

many coercions would lead to unsoundness. However, we must have enough coercions

to allow us to make progress when evaluating a program. (For example, the nth

decomposition coercion is necessary for the S KPush rule of the operational

semantics, shown in Appendix A.3.) Happily, we can be confident that we have

enough coercions, but not too many, because we prove the usual progress and

preservation theorems for System FC.

The full proof of type safety appears in the appendix; it exhibits no new proof

techniques. The structure of the proofs follows previous work, such as Weirich

et al. (2011) or Yorgey et al. (2012). Despite following previous work, we have

made one structural difference: Our operational semantics allows evaluation under

type abstractions Λa:κ.e. This choice echoes the behaviour in GHC and prevents

type abstractions from interfering with evaluation. It does not complicate the

theory.

A key step in the proof of progress is to prove consistency; that is, that no

coercion can exist between, say, Int and Bool. This is done by defining a non-

deterministic, role-directed rewrite relation on types and showing that the rewrite

system is confluent7 and preserves type constants (other than newtypes) appearing

in the heads of types. We then prove that, if a coercion exists between two types

τ1 and τ2, these two types both rewrite to a type σ. We conclude then that τ1 and

τ2, if headed by a non-newtype type constant, must be headed by the same such

constant.

4.5 Type erasure

We claim that coercions (both our new representational coercions and the older

nominal ones) are “zero-cost”. By this, we mean that the handling of coercions and

the casts do not interfere in any way with runtime evaluation. In order to prove this

claim, we define an erased language which removes all types and coercions.

7 As in prior work (Eisenberg et al., 2014), we ensure that the rewrite relation is confluent by restricting
type families to have only linear patterns. If non-linear patterns were allowed in type families (that
is, with a repeated variable on the left-hand side), combined with non-termination, our rewrite system
would not be confluent. Losing confluence does not necessarily threaten consistency – it just threatens
the particular proof technique that we use. However, a more powerful proof appears to be an open
problem in the term rewriting community. Specifically, a positive answer to open problem #79 of the
Rewriting Techniques and Applications (RTA) conference would lead to a proof of consistency; see
http://www.win.tue.nl/rtaloop/problems/79.html.
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4.5.1 Coercion abstractions

The one subtlety in this claim is that we cannot properly erase coercion abstractions.

For example, the following closed expression is well-typed:

λc:Bool ∼R Int.3+ (True � c).

Imagine erasing the coercion abstraction and cast. We would be left with 3 + True,

which is certainly not a closed expression we wish to evaluate. Accordingly, we

retain coercion abstractions even when erasing coercions. We thus must also retain

coercion application. Formally, type erasure (denoted |e|) includes the following two

equations (amongst other equations that erase types and casts):

|λc:φ.e| = λ • .|e| |e γ| = |e| •

Beyond the forms above, the erased language is just the untyped λ-calculus with

data constructors and case expressions.

Naturally, we define λ • .|e| as a value in our erased language. It therefore seems

conceivable that evaluation could get hung up on a coercion abstraction. (That

is, a Haskell program could evaluate to a coercion abstraction, which is a normal

form.) This is silly, though, because a Haskell programmer does not think in terms

of coercion abstractions and would not expect this compiler-generated form to

interrupt the execution of a program.

The way we can claim a type erasure property is that type inference never produces

a coercion abstraction. Backing up this claim is beyond the scope of this paper, but

the elaboration from Haskell to System FC embodied in the type-checking never

needs coercion abstractions. All coercion variables are bound in case matches only.

Why have coercion abstractions, then? They are useful during program trans-

formations, when we might want to combine two different branches of a case

expression, for example. It is a soundness property of these transformations that

they do not affect the final value of an expression; thus we can be sure that no

Haskell program is ever elaborated into an optimised System FC program that

evaluates to a coercion abstraction.

4.5.2 Statement of type erasure

We prove in Appendix H that there is a bisimulation between reduction in the

original and the erased language. More precisely, we prove that

• whenever e reduces to e′, then either |e| reduces to |e′| or |e| = |e′|, and

• whenever |e| reduces, e does also.

The first claim says that the erased λ-calculus faithfully implements System FC. The

second says that type abstraction, in particular, does not hold up evaluation. This is

because our version of FC reduces under type abstractions. Please see the appendix

for the details.
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4.6 Role inference

We have assumed throughout this discussion, a global context where we can look

up roles via roles(H ) and that these roles are appropriate, i.e., roles(H ) |= H for all

H . We give here the algorithm that populates the environment roles(H ):

• Primitive type constructors like (→) and (∼κ
ρ) have predefined roles for their

parameters (Figure 7).

• Type families (Section 2.5) have nominal roles for all parameters.

• The roles of class, data type, or newtype parameters are determined by a role

inference algorithm, which we describe next.

The role inference algorithm is straightforward. At a high level, it starts with the role

information of the built-in constants (→), (⇒), and (∼ρ), and propagates roles until

it finds a fixpoint. In the description of the algorithm below, we assume a mutable

environment; roles(H ) pulls a list of roles from this environment. Only after the

algorithm is complete will roles(H ) |= H hold.

1. Populate roles(T ) (for all T ) with user-supplied annotations; omitted role

annotations default to phantom for data and newtype and to nominal for

class. Other than this default, classes are treated identically to datatypes, as

they are implemented in FC via datatypes representing dictionaries (Sulzmann

et al., 2007; Hall et al., 1996). (See Section 6.4 for discussion about this choice

of default.)

2. For every data type D, every constructor for that data type K , for every σ

in a proposition of that constructor, run walk(D, σ), and for every term-level

argument type σ to that constructor run walk(D, σ).

3. For every newtype N with representation type σ, run walk(N, σ).

4. If the role of any parameter to any type constant changed in the previous

steps, go to step 2.

5. For every T , check roles(T ) against a user-supplied annotation, if any. If these

disagree, reject the program. Otherwise, roles(T ) |= T holds.

The procedure walk(T , σ) is defined as follows, matching from top to bottom:

walk(T , a) := mark the a parameter to T as R, when a is unmarked.

walk(T ,H τ) := let ρ = roles(H );

for every i, 0 < i � length (τ):

if ρi = N, then

mark all variables free in τi as N;

else if ρi = R, then walk(T , τi ).

walk(T , τ1 τ2) := walk(T , τ1);

mark all variables free in τ2 as N.

walk(T ,F (τ)) := mark all variables free in the τ as N.

walk(T , ∀b:κ.τ) := walk(T , τ).

When marking variables, we ignore those that are not parameters to the data type T

in question or have previously been marked as N. The first case deals with existential
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and local (∀-bound) type variables and the second with the case where a variable is

used both in a nominal and in a representational context.

Theorem. The role inference algorithm always terminates.

Theorem (Role inference is sound). After running the role inference algorithm,

roles(H ) |= H will hold for all H .

Theorem (Role inference is optimal). Suppose H has no role annotation. After running

the role inference algorithm, any loosening of the roles assigned to H (a change from

ρ to ρ′, where ρ � ρ′ and ρ = ρ′) would violate roles(H ) |= H .

Theorem (Role annotations only tighten roles). Suppose a role annotation assigns

roles ρ to H . If roles ρ′ were inferred for a definition H ′ identical to H but missing

H ’s role annotation, then ρ � ρ′.

Theorem (Principal role assignments). For a given set of type constants H , there

is at most one choice of role assignments roles(H ) that is optimal and such that

roles(H ) |= H .

Arguments supporting these claims appear in Appendix G.

5 Type inference with Coercible constraints

Section 2 describes a programmer-level view of when types are Coercible; this section

describes the portion of GHC’s type inference algorithm that solves these constraints.

This algorithm also produces the coercion evidence as described in Section 4, but

we elide the details of evidence creation as this process is straightforward.

Type inference in GHC is accomplished via the OutsideIn(X) algorithm, as

described by Vytiniotis et al. (2011). This algorithm is a constraint-based type

inference algorithm (Pottier & Rémy, 2005), that first generates a set of constraints

during a pass over the Haskell source code and then solves these constraints

separately. OutsideIn(X) is parameterised by a constraint language and associated

constraint solver; the X in OutsideIn(X). Our work fits into this framework by

introducing a new Coercible t1 t2 constraint and extending the constraint solver to

handle this constraint.

5.1 A constraint system with representational equality

The grammar for our instantiation of X appears in Figure 8. A constraint Q can

be empty (trivially satisfied), a conjunction of constraints, a class constraint L τ,

or an equality constraint. A nominal equality constraint τ1 ∼N τ2 is the standard

type equality constraint already present in OutsideIn(X); a representational one

τ1 ∼R τ2 is the encoding of Coercible τ1 τ2. (Phantom equality constraints τ1 ∼P τ2
are unnecessary.)

The constraint system X defines an entailment relation � � Q , a judgement that

holds whenever the assumptions � imply the constraint Q . Note that the grammar

for � includes a conjunction of both regular constraints Q as well as top-level axioms.
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Fig. 8. Grammar for our constraint system.

Fig. 9. Requirements of the entailment relation � � Q , adapted from Figure 3 of Vytiniotis

et al. (2011).

In our case, these axioms take one of three forms as shown in Figure 8: a class

instance, a type family instance, or a newtype axiom. The OutsideIn(X) framework

expects the entailment relation to uphold the properties listed in Figure 9.

In our case, the entailment relation essentially duplicates Figure 5, leaving out the

form of the coercions themselves. Added onto those rules are rules for type classes,

which do not concern us here. It can easily be shown that this entailment relation

satisfies the properties of Figure 9. In particular, note that the substitutivity property

of entailment is directly implied by a standard substitution lemma over coercions.

5.2 An overview of OUTSIDEIN(X)

We start with a brief overview of the OutsideIn(X) algorithm, somewhat simplified

from its original presentation.8 Our goal is not to provide a complete explanation of

OutsideIn(X), but to provide enough context to explain the modifications required

by the new Coercible constraint. Due to the complexities they add to the algorithm,

polytypes (headed by ∀) are excluded from this presentation; their complexity is

orthogonal to roles.

OutsideIn(X) uses a judgement Γ �� e : τ � Qw to generate constraints in the

language X. We can view Γ �� e : τ � Qw as an algorithm whose inputs are Γ

8 Specifically, we omit implication constraints, touchable variables, and the flattening substitution.
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and e and whose outputs are τ, the type of the expression e and Qw, the “wanted”

constraint. By “wanted”, we mean that the constraint Qw must be satisfiable for e

to have type τ. The constraint Qw is then run through a constraint solver, in an

attempt to reduce Qw to the empty constraint ε via simplifications and substitutions.

Constraints can also be “given” constraints. These constraints arise from user

type annotations. For example, if the user has declared foo :: Coercible a b ⇒ [a]

→ [b], then the definition of foo will be type-checked under an assumption that

a ∼R b. This constraint will be considered a given.

5.2.1 The solver pipeline

The solver maintains a work list of simple constraints (that is, constraints without

conjunctions), with given constraints prioritised over wanted ones. It proceeds by

popping the first constraint off the work list (this constraint becomes the work item)

and then processing it through the following pipeline:

1. Types in the work item are flattened, whereby a type τ, possibly with type family

applications, is converted into a type ξ devoid of type family applications. Such

types are easier to work with in subsequent steps. Flattening τ (essentially)

creates a new type variable a for every type family application F (σ) in τ,

replacing the F (σ) with a , and then adding the F (σ) ∼N a constraint to the

work list. The details are, of course, more involved; see Vytiniotis et al. (2011).

2. The work item is then canonicalised (details are below), which reduces it to

one of several simple forms. See Figure 10.

3. The work item then undergoes binary interactions with inert constraints, where

the inert constraints are those that have already gone through this pipeline.

For example, if a given inert constraint is a ∼N Int, then a work item of Ord a

would be rewritten to Ord Int.

4. Lastly, the work item interacts with top-level axioms. This step includes type

family reduction and class instance lookup.

Whilst processing a work item, it is possible that we learn something new about a

type variable, say, that a type variable b is now equal to Bool. When this happens,

any inert constraint mentioning b is kicked out of the inert set and re-added to the

work list. This step is necessary because the new knowledge about b may allow new

interactions to occur.

5.2.2 Canonicalisation

The component of the solver that concerns us most is the canonicalisation algorithm.

We write one step of this algorithm as canon [�](Q1) = Q2 if it succeeds, or as

canon [�](Q1) = ⊥ if it fails because the constraint is unsatisfiable. The parameter �

is a constraint flavour, which can be either given (g) or wanted (w).

Canonicalisation runs the canon algorithm until a fixpoint is reached; the result

may or may not be canonical (according to the �can Q judgement in Figure 10). A

constraint without a canonical form is not an error – perhaps later, the constraint

solver will learn more and will be able to make more progress.
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Fig. 10. Canonical constraints, �can Q .

There are three basic canonical forms: A class constraint where all arguments

are type-function-free (ξ is a metavariable for type-function-free types), an equality

between a type family application and a type variable, and an equality between a

type variable and a type that is not a type family application. The empty constraint

and the conjunction of canonical constraints is also canonical.

The canonicalisation algorithm must be sound with respect to constraint entail-

ment.

Property 1 (Canonicalisation soundness).

1. When canon [g](Q1) = Q2, it must be that Q1 � Q2. That is, we can derive

evidence for Q2 given evidence for Q1.

2. When canon [w](Q1) = Q2, it must be that Q2 � Q1. That is, by producing

evidence for Q2 we will be able to produce evidence for Q1.

5.3 Canonicalising equality constraints

Adding representational equalities to X requires changing the canonicalisation

algorithm of OutsideIn(X). Indeed, with the exception of a straightforward new

binary interaction (Section 5.4), this is the only change necessary for the constraint

solver.

Figure 11 presents the portion of the algorithm that works on equality constraints

of the form τ1 ∼ρ τ2. A result of ⊥ (pronounced “failure”) means that a definite

type error can be reported. For example, attempting to canonicalise Int ∼R Bool

yields failure.

We describe the rules from the figure in order from top to bottom, except for refl

which we defer to Section 5.3.4.

5.3.1 Unwrapping newtypes

Rules newl and newr unwrap newtypes. They work only at the outermost

level, unwrapping Age but not Maybe Age. Although not expressed in Figure 11,

unwrapping newtypes happens only when the newtype’s constructor is in scope (see

Section 3.1).
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Fig. 11. The canonicalisation algorithm for equality constraints. These rules are explained in

Section 5.3.

Both rules also unwrap eagerly, continuing to unwrap outermost newtypes until

a type without an outermost newtype is found. If no such type is found (because

a newtype is recursive without an intervening non-newtype), then rule newl (or

newr) does not apply. This is the meaning of the �∗ widget in the rules.

In the case of a recursive newtype, though, this unwrapping can diverge. For

example, consider this unlikely construction:

newtype FixEither x = MkFE (Either x (FixEither x))

The role of FixEither’s parameter will be inferred to be representational. Now

suppose we are trying to canonicalise the wanted constraint:

[w] FixEither Age ∼R FixEither Int.

Assuming the MkFE is in scope, unwrapping yields:

[w] Either Age (FixEither Age) ∼R Either Int (FixEither Int).

Now decomposition yields Age ∼R Int (which is easily solved), and the original

constraint FixEither Age ∼R FixEither Int, so we are back where we started, having

made no progress. In the actual implementation, a reduction counter (incremented
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every time a constraint is simplified and with an arbitrary, user-controllable limit)

notices the loop and reports an error.

5.3.2 Decomposition of applied type constants

The decomp rules implement decomposition of an applied type constant. Decompo-

sition for nominal equality is straightforward: if the two constants match, decompose

(decompn); otherwise, fail (decompfn). For representational equality, however, the

rules are more subtle. Rule decompr fires only for non-newtypes. It is easiest to

understand this restriction by considering the “given” case separately from the

“wanted” case.

We cannot decompose given newtype representational constraints. If the constraint

in question is a given, then it would be unsound to decompose. Note rule Co Nth

from Figure 5, which forbids the type constant involved from being a newtype. See

Section 4.2.7 for the details. Creating evidence for decomposing a given constraint

of the form H τ ∼R H σ requires using nth, and so we are stuck.

Wanted newtype representational constraints are tricky. We must decompose wanted

newtype representational constraints, even when unwrapping does not apply. For

example, it happens that the abstract type IO t is implemented by a newtype. Haskell

programmers certainly want to coerce between (IO Int) and (IO Age). However, since

IO is abstract, its data constructor is not visible to clients, and hence we cannot use

newtype unwrapping (Section 5.3.1); so the only way forward is to decompose.

However, we must tread carefully, because in certain situations, it is just possible

for decomposition to make a provable goal unprovable, which would compromise

the completeness of type inference. Here is a contrived scenario illustrating the

problem:

newtype ConstBool a = Mk Bool

type role ConstBool representational

Suppose the constructor Mk is not in scope. Now, consider the following constraints,

where Greek letters denote unification variables:

[g] ConstBool a ∼R ConstBool b (1)

[w] ConstBool α ∼R ConstBool b (2)

[w] α ∼R a (3)

The wanted goal is certainly provable from the givens; just use (3) to substitute

for α in (2), and then (2) is equal to (1). However, suppose the constraint solver

happens to process (2) before (3). Because Mk is not in scope, ConstBool cannot

be unwrapped. So we apply decomposition, yielding the unsatisfiable wanted goal

α ∼R b, and hence (wrongly) report an error. This kind of incompleteness is

particularly confusing to the programmer, because the goal we are trying to prove

is practically equal to one of the givens.

To avoid this confusion, we do one extra check before decomposing a wanted

newtype representational equality, to make sure that no givens could possibly
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influence the wanted constraint. This check is done by trying to unify all givens

with the constraint; if any given indeed unifies, then we do not decompose. This is

the informally stated “no givens might match” side condition on the decompnew

rule. To formalise the side condition, we would need to pass to canon the set

of (canonicalised) givens, which would clutter up Figure 11. Happily, there is no

difficulty in the implementation, and the check turns out not to be as expensive as

it might seem, because there are rarely many givens in practice.

There is another awkward consequence of decomposing wanted representational

newtypes. Consider the FixEither example given in Section 5.3.1. As we saw there,

canonicalising will loop if the data constructor MkFE is in scope. But if it is not,

we will decompose to Age ∼R Int, which is easily soluble. This is a situation where

importing the MkFE constructor makes a typeable program become ill-typed, rather

unfortunately. However, this seems the best we can do.

Failure and stuck cases for decomposing representational equalities. In rule decompfr,

we fail (reporting an error) when canonicalising a representational equality between

two different type constants, neither of which is a newtype.

On the other hand, to account for the ConstBool example discussed above,

decompd returns unchanged any remaining representational equality constraint

between two applied type constants. If no earlier rule has fired, then we don’t know

enough about these types either to canonicalise fully or to be sure the program has

a type error. These constraints will be examined again by the solver after it has

learned more from other constraints.

5.3.3 Decomposition of applied type variables

Rule appn decomposes an equality between two type applications, where the head

of the type in the “function” position is just a type variable. (Note that the head

of a nested type application must be either a type constant or a type variable;

anything else would be ill-kinded.) This rule works only over nominal equality, as

decomposing a representational equality of this form – say, a τ ∼R b σ – is unsound,

for two reasons:

• We do not know the roles on a and b. Accordingly, should we reduce to

τ ∼R σ or τ ∼N σ? It is impossible to know, especially considering that we

might learn, later on during solving, the concrete value for a or b.

• Perhaps more problematic, type variables may stand in for newtypes. If we

learn, say, that a ∼N N for some newtype N, then it is possible that τ and σ

are unrelated, as N τ ∼R b σ might be solved via unwrapping N.

Decomposing a representational equality amongst such type applications is not

possible, but neither is this an error. We thus simply fail to canonicalise such

constraints, as shown in appr, which returns the same constraint it is given.
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5.3.4 The reflexivity check

Rule refl checks for reflexivity, succeeding with an empty constraint if the equality

is reflexive. This check is needed only for representational equality constraints,

as it is redundant with later checks for nominal equality: Any nominal equality

constraint is decomposed into its atoms, which are then checked for reflexivity. For

representational equality, however, this is not the case, both because of the possibility

of recursive newtypes and of impossible-to-decompose type applications.

Here are examples of these cases. Suppose we have X:

newtype X = MkX (Int → X)

Further, suppose we have these (unrelated) constraints:

[w] X ∼R X

[w] f a ∼R f a

Without the reflexivity check, canonicalising the first constraint would loop, in exactly

the same way as the FixEither example of Section 5.3.1. Canonicalising the second

constraint would simply be stuck without the reflexivity check, hitting rule appr and

making no progress. Programmers find it particularly frustrating if a compiler says

that it is unable to prove that two syntactically identical types are coercible, e.g.,

Coercible X X!

Note that rule refl is tried first, before unwrapping newtypes, otherwise the X

example above would loop through newl/newr.

5.3.5 Dealing with type variables

Rule tvrefl dispatches the case where we compare a type variable with itself, at

either role. The canon algorithm then does an “occurs check” (rules occurl and

occurr). The occurs check is made for nominal equality only, because an occurs-

check failure for representational equality is not necessarily an error. Suppose we

have a ∼R b a , but then we later learn that b ∼N Id, where newtype Id a = Id a.

The a ∼R b a equality now becomes easily solvable.

Because of the possibility of occurs-check failures, rules tvl and tvr do not neces-

sarily produce canonical constraints over representational equalities. Canonical type

variable equality constraints must pass the occurs check, even for representational

equality constraints, because they are used for substitutions. Our a ∼R b a constraint

then remains non-canonical, but not otherwise harmful.

As detailed in Section 5.4, we use canonical type variable equalities as a substitu-

tion in other constraints. However, because representational equalities that fail the

occurs check are not canonical, these equalities cannot be used. This can cause yet

another source of incompleteness in our algorithm. Consider the following scenario:

[g] a ∼R b a

[w] a Int ∼R b a Int
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The first, given equality cannot be canonicalised, but nor is it an outright error.

When we try to solve the second, wanted equality constraint, we fail, unable to use

the first for substitution.

5.3.6 Correctness of canon

Theorem (Soundness of canon). The canon algorithm as presented in Figure 11 is

sound, according to Property 1.

Proof. For each rule in canon , it is possible to create a coercion witnessing the result

from the input, and it is possible to create a coercion witnessing the input from

the result, all using the coercion formation rules of Figure 5. These coercions are

all straightforward to build. As the entailment relation � � Q derives from the

coercion formation rules, these coercions witness the entailments we desire.

Note that we do not attempt to prove the algorithm complete – indeed, we know

that with its treatment of recursive newtypes, type applications, and occurs-check

failures, the algorithm is incomplete.

5.4 Substitution with representational equalities

Using the canonicalisation algorithm just described is nearly enough to have the Out-

sideIn(X) solver work with representational equalities. The one remaining piece is to

implement transitivity in the presence of assumptions. For example, we would like to

be able to deduce a1 ∼R a2 ∧a2 ∼R a3 � a1 ∼R a3. This is accomplished by allowing

substitution by representational equalities in representational equality constraints.

(Previously, only nominal equality constraints were used for substitution.) In this

case, a1 ∼R a2 and a2 ∼R a3 are givens. These are already in canonical form. When

solving the wanted a1 ∼R a3, we can use canonical type variable representational

equality constraints to rewrite other representational equality constraints. We thus

rewrite a1 to a2 and then a2 to a3 in a1 ∼R a3. We then get a3 ∼R a3 and are done.

This use of rewriting only works with canonical constraints. Transitivity is thus

somewhat limited. For example, the following fails to type-check:

incomplete :: (Coercible (a b) (c d), Coercible (c d) (e f)) ⇒ c d → a b → e f

incomplete = coerce

(The first argument is just to make c and d unambiguous.) This definition should be

accepted, but it is not, as canon cannot canonicalise the givens and then discover the

transitivity. We conjecture that this source of incompleteness could be overcome with

more engineering, but there seems to be little incentive to add the extra complexity

to the solver in this obscure case.

5.5 Properties of type inference

We have detailed our update to the canonicalisation algorithm and have given a

sketch of the overall type inference algorithm. Here, we informally discuss some of

the attributes of type inference in Haskell augmented with Coercible.
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Incompleteness. Our type inference algorithm remains incomplete, following on

from the known incompleteness of OutsideIn(X) (e.g., see Vytiniotis et al. (2011),

Section 6.5). However, our approach specifically towards representational equality

adds new forms of incompleteness. We saw examples in Sections 5.3.1, 5.3.2, and

5.3.5. We have considered ways to improve the algorithm to handle these cases and

believe there is opportunity for such improvement. However, we have been unable

to find a principled approach that would be a clear improvement over the algorithm

we present here, in terms of realistic programs that are newly accepted and in terms

of engineering effort and complexity. We expect that this algorithm will evolve as

more users make practical use of Coercible and identify places were the algorithm’s

incompleteness is a concrete barrier to progress.

Decidability Though we have not formally proved it, we conjecture that solving

for representational equality is undecidable. Determining whether or not two types

are representationally equal is essentially an equality check on equirecursive higher

kinded types, which would appear to subsume equivalence of terms in a λ-calculus

with a fix operator. This conjectured lack of decidability, if indeed true, prevents us

from ever writing a complete algorithm.

One still might ask whether the incomplete algorithm we have written is guar-

anteed to terminate. As discussed in Section 5.3.1, our implementation must use a

counter to prevent divergence in the presence of recursive newtypes. Accordingly,

our algorithm, as stated, is not guaranteed to terminate. However, we find that this

is not problematic in practice, both because of the presence of a counter to detect

runaway recursion and the fact that non-termination is believed to happen only

when the user requires us to solve an undecidable problem: representational equality

amongst recursive newtypes. When a user asks for such a thing, we are not terribly

ashamed when we take forever in delivering it.

6 Reflection and discussion

This section discusses some opportunities and choices that arose in the course of

our work on safe coercions.

6.1 Generalised newtype deriving done right

As mentioned before, newtype is a great tool to make programs more likely to be

correct, by having the type checker enforce certain invariants or abstractions. But

newtypes can also lead to tedious boilerplate. Assume the programmer needs an

instance of the type class Monoid for her type HTML. The underlying type String

already comes with a suitable instance for Monoid. Nevertheless, she has to write

quite a bit of code to convert that instance into one for HTML:

instance Monoid HTML where

mempty = MkHTML mempty

mappend (MkHTML a) (MkHTML b) = MkHTML (mappend a b)

mconcat xs = MkHTML (mconcat (map unHTML xs))
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Fig. 12. The above implementation of unsafeCoerce compiles (with appropriate flags) in

GHC 7.6.3 but does not in GHC 7.8.1.

Note that this definition is not only verbose, but also non-trivial, as invocations of

MkHTML and unHTML have to be put in the right places, possibly via some higher

order functions like map – all just to say “just use the underlying instance”!

This task is greatly simplified with Coercible: Instead of wrapping and unwrap-

ping arguments and results, she can directly coerce the method of the base type’s

instance itself:

instance Monoid HTML where

mempty = coerce (mempty :: String)

mappend = coerce (mappend :: String → String → String)

mconcat = coerce (mconcat :: [String] → String)

The code is pure boilerplate: apply coerce to the method, instantiated at the base

type by a type signature.

And because it is boilerplate, the compiler can do it for her; all she has to do

is to declare which instances of the base type should be lifted to the new type by

listing them in the deriving clause:

newtype HTML = MkHTML String

deriving Monoid

This is not a new feature: GHC has provided this Generalised Newtype Deriving

(GND) for many years. But, the implementation was “magic” – GND would

produce code that a user could not write herself. Now, the feature can be explained

easily and fully via coerce.

Furthermore, GND was previously unsound (Weirich et al., 2011). When combined

with other extensions of GHC, such as type families (Chakravarty et al. 2005a, 2005b)

or GADTs (Cheney & Hinze, 2003), GND could be exploited to completely break

the type system: Figure 12 shows how this notorious bug can allow any type to
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be coerced to any other. The clause “deriving (UnsafeCast b)” is the bogus use of

GND, and now will generate the instance:

instance UnsafeCast b (Id2 a) where

unsafe = coerce (unsafe :: Id1 a → Discern (Id1 a) b)

which will rightly be rejected because Discern’s first parameter has a nominal role.

Indeed, preventing abuse of GND was the entire subject of Weirich et al. (2011).

Similarly, it was possible to use GND to break invariants of abstract data types.

The addition of coerce makes it yet easier to break such abstractions. As discussed

in Section 3.1, these abuses can now be prevented via role annotations.

6.2 Coercible and rewrite rules

What if a client of module Html writes this?

....( map unHTML hs)...

She cannot use coerce because HTML is an abstract type, so the type system would

(rightly) reject an attempt to use coerce (Section 3.1). However, since HTML is a

newtype, one might hope that GHC’s optimiser would transform (map unHTML)

to coerce. The optimiser must respect type soundness, but (by design) it does

not respect abstraction boundaries: Dissolving abstractions is one key to high

performance.

The correctness of transforming (map unHTML) to coerce depends on a theorem

about map, which a compiler can hardly be expected to identify and prove all

by itself. Fortunately, GHC already comes with a mechanism that allows a library

author to specify rewrite rules for their code (Peyton Jones et al., 2001). The author

takes the proof obligation that the rewrite is semantics-preserving, whilst GHC

simply applies the rewrite whenever possible. In this case, the programmer could

write

{−# RULES "map/co" map coerce = coerce #−}
In our example, the programmer wrote (map unHTML). The definition unHTML in

module Html does not mention coerce, but both produce the same System FC code

(a cast). So via cross-module inlining (more dissolution of abstraction boundaries)

unHTML will be inlined, transforming the call to the equivalent of (map coerce), and

that in turn fires the rewrite rule. Indeed, even a nested call like map (map unHTML)

will also be turned into a single call of coerce by this same process applied twice.

The bottom line is this: The author of a map-like function someMap can

accompany someMap with a RULE, and thereby optimise calls of someMap

that do nothing into a simple call to coerce.

Would it be sufficient to expose only this mechanism on the Haskell source level to

achieve our goals, without introducing a user-visible coerce function and Coercible

constraint? No, for a number of reasons:

• Rewrite rules are but an optimisation, e.g., they are only applied when the

compiler is run with the -O command line option. The coerce function is

always a zero-cost function.
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• Rewrite rules are rather difficult to master. It takes practice to predict when

they will fire, and it is tricky to investigate the reasons in case they do not fire.

The programmer would hence have a hard time to guarantee that a certain

piece of code is indeed compiled down to a zero-cost conversion.

• When converting between two complex types, the programmer would have

to puzzle together a possible large number of map-like functions, newtype

constructors and deconstructors to build a rather complicate chunk of code,

just to let the compiler optimise it away. With coerce, he writes just that and

the compiler does the rest of the work.

• Moreover, some of the these map-like functions might not be exported, might

not have rules attached to them or might not even exist in the first place,

barring the user from implementing the desired conversion by foot.

6.3 Syntax for role annotations

Recall the Map example from Section 3.1, and its role annotation:

data Map k v = Leaf | Node k v (Map k v) (Map k v)

type role Map nominal representational

This is only one possible concrete syntax for role annotations, and we explored a

number of others. In doing so, we identified the following design criteria:

1. Role annotations must be optional. Otherwise, all existing code would be

broken.

2. Role annotations should be succinct.

3. Role annotations will be a relatively obscure feature, and therefore should be

searchable should a user come across one.

4. Code with role annotations should compile with older versions of GHC, easing

migration to the first version of GHC supporting roles (GHC 7.8).

5. Role annotations should not be specified in a pragma; pragmas are meant to

be reserved for implementation details (e.g., optimising), and roles are a type

system feature.

6. Role annotations should be easy to refactor as a data type evolves.

7. Code is read much more often than it is written; favour readability over

concision.

Our chosen syntax, with type role ..., satisfies criteria (1), (3), (5), and (7), at the

cost of some others. In particular, this choice is not backward compatible. A role

annotation fails to parse in earlier versions of GHC. However, GHC supports C-style

preprocessor directives, so library authors can selectively include role annotations

using preprocessor directives. The fact that the annotations are standalone means

they can be grouped under one set of directives instead of sprinkled throughout

the source file. Note that this syntax is very easy to search for and the written-out

nature of the roles makes them readable, if not so concise. Breitner et al. (2014b)

discusses alternatives to this syntax in Appendix B.1.
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6.4 The role of role inference

Why did we add role inference to GHC, assigning the most permissive role to type

constructors by default?

We did not have to design the language in this way. We could have required

programmers to annotate the roles of every type, which GHC would check for

consistency. However, in this case, the burden on programmers seems drastic and

migration to this system overwhelming, requiring all existing data type declarations

to be annotated with roles.

Alternatively, we could specify that all unannotated roles default to nominal (thus

removing the need for role inference). According to the specification of Figure 7, it

is always sound to assign the nominal role to all parameters of a type constructor

H . This choice would lead to greater abstraction safety by default. For example,

the implementor of Map would not need to add a role annotation to guarantee

abstraction.

However, we choose to use the most permissive roles by default for several reasons.

First, for convenience: this choice increases the availability of coerce (as only those

types with annotations would be Coercible otherwise), and it supports backward

compatibility with the GND feature (see Section 6.1).

Furthermore, role inference also means that the majority of programmers do not

need to learn about roles nor need to add role annotations. Users of coerce will

need to consider roles, as will library implementors who use class-based invariants

(see Section 3.1). Other users are unaffected by roles and will not be burdened by

them.

Our choices in the design of the role system has generated vigorous debate.9 This

discussion is healthy for the Haskell community. The difficulty with abstraction is

not new: With GND, it has always been possible to lift coercions through data

types, potentially violating their class-based invariants. The features described in

this paper make this subversion both more convenient (through the use of coerce)

and, more importantly, now preventable (through the use of role annotations).

6.5 Roles in practice

We have described a mechanism to allow safe coercions amongst distinct types,

and we have re-implemented GHC’s previously unsafe GND extension in terms of

these safe coercions. Naturally, this change causes some code that was previously

accepted to be rejected. Given that Haskell has a large user base and a good deal

of production code, how does this change affect the community?

Advance testing. During the development of this feature, we tested it against several

popular Haskell packages available through Hackage, an online Haskell open-source

distribution site. These tests were all encouraging and did not find any instances of

hard-to-repair code in the wild.

9 To read some of this debate, see the thread beginning with this post: http://www.haskell.org/
pipermail/libraries/2014-March/022321.html
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Compiling all of Hackage. As of 30 September 2013, 3,234 packages on Hackage

compiled with GHC 7.6.3, the last released version without roles. The development

version of GHC at that time included roles. A total of only four packages failed to

compile directly due to GND failure.10 Of these, three of the failures were legitimate

– the use of GND was indeed unsafe. For example, one case involved coercing a type

variable passed into a type family; the author implicitly assumed that a newtype

and its representation type were always considered equivalent with respect to the

type family. Only one package – acme-schoenfinkel – failed to compile because of

the gap in expressiveness between the roles in Weirich et al. (2011) and those here.

No other Hackage package depends on this one, indicating it is not a key part of

the Haskell open-source fabric. The example in Section 8.1.1 is along similar lines

to the failure observed here.

These data were gathered almost two months after the implementation of roles

was pushed into the development version of GHC, so active maintainers may have

made changes to their packages before the study took place. Indeed, we are aware

of a few packages that needed manual updates. In these cases, instances previously

derived using GND had to be written by hand, but quite straightforwardly.

Rewrite rules. Since GHC 7.10, the rewrite rule "map/co" (Section 6.2) has been

added to the standard library, and indeed, it does fire: We analysed 1,077 packages.11

In 64 of these packages, the "map/co" rule fired and eliminated a total of 272 calls

to map (out of 13,991 calls that were not already dissolved by list fusion).

7 Related work

Prior work discusses the relationship between roles in FC and languages with

generativity and abstraction, type-indexed constructs, and universes in dependent

type theory. We do not repeat that discussion here. Instead we use this section to

clarify the relationship between this paper and Weirich et al. (2011), as well as make

connections to other systems.

7.1 Prior version of roles

The idea of roles was initially developed in Weirich et al. (2011) as a solution to the

GND problem. That work introduces the equality relations ∼R and ∼N (called “type

equality” and “code equality” resp. in Weirich et al. (2011)). However, the system

presented in Weirich et al. (2011) was quite invasive: It required annotating every

sub-tree of every kind with a role. Kinds in GHC are already quite complicated

because of kind polymorphism, and a new form of role-annotated kinds would be

more complex still.

10 These data come from Bryan O’Sullivan’s work, described here: http://www.haskell.org/
pipermail/ghc-devs/2013-September/002693.html That posting includes three additional GND
failures; these were due to an implementation bug, since fixed.

11 Stackage nightly 21 May 2015, excluding two packages with non-Haskell dependencies that were not
fulfiled on our test system.
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In this paper, we present a substantially simplified version of the roles system

of Weirich et al. (2011), requiring role information only on the parameters to data

types. Our new design keeps roles and kinds modularly separate, so that roles can

be handled almost entirely separately (both intellectually and in the implementation)

from kinds. The key simplification is to “assume the worst” about higher-kinded

parameters, by assuming that their arguments are all nominal. In exchange, we give

up some expressiveness; specifically, we give up the ability to abstract over type

constructors with non-nominal argument roles (see Section 8.1).

Furthermore, the observation that it is sound to “assume the worst” and use

parameterised types with less permissive roles opens the door to role annotations.

In this work, programmers are allowed to deliberately specify less permissive roles,

giving them the ability to preserve type abstractions.

Surprisingly, this flexibility means that our version of roles actually increases

expressiveness compared to Weirich et al. (2011) in some places. In Weirich et

al. (2011), a role is part of a type’s kind, so a type expecting a higher kinded argument

(such as Monad) would also have to specify the roles expected by its argument.

Therefore, if Monad is applicable to Maybe, it would not also be applicable to a

type T whose parameter has a nominal role. In the current work, however, there is

no problem because Maybe and T have the same kind.

Besides the simplification discussed above, this paper makes two other changes to

the specification of roles presented in Weirich et al. (2011).

• The treatment of the phantom role is entirely novel; the rule Co Phantom has

no analogue in prior work.

• The coercion formation rules (Figure 5) are refactored so that the role on the

coercion is an output of the (syntax-directed) judgement instead of an input.

This is motivated by the implementation (which does not know the role at

which coercions should be checked) and requires the addition of the Co Sub

rule.

There are, of course, other minor differences between this system and Weirich et

al. (2011) in keeping with the evolution of System FC. The main significant change,

unrelated to roles, is the re-introduction of left and right coercions; see Section 4.2.7.

One important non-difference relates to the linear-pattern requirement. Section 4.4

describes that our language is restricted to have only linear patterns in its type

families. (GHC, on the other hand, allows non-linear patterns as well.) This

restriction exists in the language in Weirich et al. (2011) as well. Section 4.2.2

of Weirich et al. (2011) defines so-called Good contexts as having certain properties.

Condition 1 in this definition subtly implies that all type families have linear patterns

– if a type family had a non-linear pattern, it would be impossible, in general, to

establish this condition. The fact that the definition of Good implies linear patterns

came as a surprise, further explored in Eisenberg et al. (2014). The language described

in the present paper clarifies this restriction, but it is not a new restriction.

Finally, because this system has been implemented in GHC, this paper discusses

more details related to compilation from source Haskell. In particular, the role

inference algorithm of Section 4.6 is a new contribution of this work.
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7.2 Prior version of Coercible

This paper describes Coercible as implemented in GHC 7.10, using a dedicated

solver in the type checker to handle representational equality constraints (Coercible)

as well as nominal equality constraints (∼). This approach differs from the initial

design that was shipped with GHC 7.8 and discussed in an earlier version of this

work (Breitner et al., 2014a), where Coercible was presented as a type class instead

of a special constraint.

In particular, our prior work explains the solving of Coercible constraints in terms

of type class instances. The motivation was to make it possible for the programmer

to predict and understand the behaviour of the compiler without special knowledge,

assuming she is aware of type classes.

Unfortunately, that approach had a few drawbacks. Although it was sold as

behaving “like a normal type class”, that was never fully true, and the solver treated

Coercible special in a few cases:

• It would refrain from building recursive evidence. Recursive evidence is

common and useful with type classes, but for Coercible it would simply

cause the program to loop when executed, so we gave a compile time error

instead.

• It allowed constraints of the form Coercible (forall a. s) (forall a. t) which are

forbidden for type classes, but required here to deal with newtypes such as

newtype Sel = MkSel (forall a. [a] → a).

• Whilst type class instances are always exported and unconditionally visible,

the visibility of the newtype unwrapping instance depends on whether the

constructor is in scope.

In the end, we found it clearer to stop pretending Coercible is a type class and

honestly call it a constraint of its own right, with its own rules and its own solver.

This also made the feature more powerful, as the instance-based approach is not

able to decompose given Coercible constraints (Section 2.7).

7.3 OCaml and variance annotations

The interactions between sub-typing, type abstraction, and various type system

extensions such as GADTs and parameter constraints also appear in the OCaml

language. In that context, variance annotations act like roles; they ensure that

subtype coercions between compatible types are safe. For example, the type α list

of immutable lists is covariant in the parameter α: if σ � τ, then σ list � τ list.

Variances form a lattice, with invariant, the most restrictive, at the bottom; covariant

and contravariant incomparable; and bivariant at the top, allowing sub-typing in

both directions. It is tempting to identify invariant with nominal and bivariant with

phantom, but the exact connection is unclear. Scherer and Rémy (2013) show that

GADT parameters are not always invariant.

Exploration of the interactions between type abstraction, GADTs, and other

features have recently revealed a soundness issue in OCaml12 that has been confirmed

12 http://caml.inria.fr/mantis/view.php?id=5985
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to date back several years. Garrigue (2013) discusses these issues. His proposed

solution is to “assume that nothing is known about abstract types when they are

used in parameter constraints and GADT return types” – akin to assigning nominal

roles. However, this solution is too conservative, and in practice the OCaml 4.01

compiler relies on no fewer than six flags to describe the variance of type parameters.

However, lacking anything equivalent to Core and its tractable metatheory, the

OCaml developers cannot demonstrate the soundness of their solution in the way

that we have done here.

What is clear, however, is that generative type abstraction interacts in interesting

and non-trivial ways with type equality and sub-typing. Roles and type-safe coercion

solve an immediate practical problem in Haskell, but we believe that the ideas have

broader applicability in advanced type systems.

8 Future directions

As of the date of writing (June 2015), roles seem not to have caused an undue

burden to the community. The first release candidate for GHC 7.8 was released on

3 February 2014, followed by the full release on 9 April, and package authors had

been updating their work to be compatible for some time. The authors of this paper

are unaware of any major problems that Haskellers have had in updating existing

code. However, two problems have been identified: the need for roles to work in

higher order scenarios, and the need for a better interaction between roles and Safe

Haskell (Terei et al., 2012). We also review some proposed expansions of the roles

feature to more exotic Haskell constructs.

8.1 Roles for higher order types

Some users wish to use roles in scenarios that are currently beyond the ability

of roles to express. We focus on one such scenario, as it is representative of all

examples we have seen, including the package that did not compile when testing all

of Hackage (Section 6.5).

8.1.1 Adding join to Monad

Imagine adding the join method to the Monad class, as follows:

class Monad m where

...

join :: forall a. m (m a) → m a

With this definition, GND would still work in many cases. For example, if we define

newtype M a = MkM (Maybe a)

deriving Monad

GND will work without a problem. We would need to show Coercible (Maybe

(Maybe a) → Maybe a) (M (M a) → M a), which is straightforward.
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More complicated constructions run into trouble, though. Take this definition,

written to restrict a monad’s interface:

newtype Restr m a = MkRestr (m a)

deriving Monad

To perform GND in this scenario, we must prove Coercible (m (m a) → m a)

(Restr m (Restr m a) → Restr m a). In solving for this constraint, we eventually

simplify to Coercible (m (m a)) (m (Restr m a). At this point, we are stuck, because

we do not have any information about the role of m’s parameter, so we must assume

it is nominal. The GND feature is thus not available here. Similar problems arise

when trying to use GND on monad transformers, a relatively common idiom.

How would this scenario play out under the system proposed in Weirich et

al. (2011)? This particular problem wouldn’t exist – m’s kind could have the right

roles – but a different problem would. A type’s kind also stores its roles in Weirich

et al. (2011). This means that Monad instances could be defined only for types that

expect a representational parameter. Yet, it is sometimes convenient to define a

Monad instance for a data type whose parameter is properly assigned a nominal

role. The fact that the system described in this paper can accept Monad instances

both for types with representational parameters and nominal parameters is a direct

consequence of the Role assignment narrowing theorem (Section 4.3), which does not

hold of the system in Weirich et al. (2011).

8.1.2 Implication constraints

Looking forward, there is a proposal to indeed add join to Monad, and so we want

to be able to allow the use of GND on this enhanced Monad class. One promising

approach to this problem is to allow user-specified implication constraints.

Continuing the example from above, imagine we could write the following:

deriving instance (Monad m, forall a b. Coercible a b ⇒ Coercible (m a) (m b))

⇒ Monad (Restr m)

When we are trying to simplify Coercible (m (m a)) (m (Restr m a)), we see that

this constraint can be solved if Coercible (m a) (Restr m a), and so we simplify.

This last constraint is easy to solve via the definition of Restr, and so we succeed.

The constraint forall a b. Coercible a b ⇒ Coercible (m a) (m b) is an implica-

tion constraint (Hinze & Peyton Jones, 2000), saying that Coercible (m a) (m b)

holds whenever Coercible a b holds, for universally quantified type variables a and

b. These constraints do not currently exist in Haskell, but users have wanted them

for some time.13 With such constraints, it would seem that we can effectively assign

roles to parameters of type variables, much like we already assign roles to parameters

of type constants. For example, the implication constraint above gives the parameter

to m a representational role. This role assignment is precisely what is needed to use

GND with Monad and Restr.

13 See https://ghc.haskell.org/trac/ghc/ticket/2256, which was created in 2008.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 29 Jul 2016 IP address: 50.133.218.66

44 J. Breitner et al.

The details of this have yet to be fully worked out, but we believe that the

implementation could be straightforward, given that GHC already deals with internal

implication constraints, derived from type-checking GADT pattern-matches.

8.2 Roles and safe Haskell

Safe Haskell (Terei et al., 2012) is a subset of Haskell known to have additional

safety properties. Safe Haskell excludes constructs such as the infamous functions

unsafeCoerce and unsafePerformIO, as these can be used to subvert the type

system. It also excludes Template Haskell (Sheard & Peyton Jones, 2002), as that

feature can look up type definitions and thus break abstraction. See the original

paper for the details.

One of the consequences of the unsoundness of earlier versions of GND is that

the feature was (quite rightly) excluded from the Safe Haskell subset. However, even

with roles and GND written in terms of coerce, the feature still does not meet the

Safe Haskell criteria. At issue is preserving datatype abstraction.

We describe in Section 3.1 that we allow coercions to happen even on data

types for which the constructors are not available, such as Map. However, this

violates Safe Haskell’s promise that no abstraction barrier is broken through. To

rectify this problem, GHC could use a more stringent check when satisfying a

Coercible constraint when compiling in Safe mode, requiring all constructors of

all data types to be coerced under to be visible. This means, essentially, traversing

the entire tree of data type definitions, making sure all constructors of all data

types, recursively, are available. We did not go this path not only because of the

performance penalty of potentially having to loading further interface files, but also

as it would require users to import many constructors that remain unmentioned

in their code, just to satisfy this requirement. We continue to look for a better

solution to this problem; for some ideas, the reader is encouraged to consult

https://ghc.haskell.org/trac/ghc/wiki/SafeRoles.

8.3 Conservativity of roles

8.3.1 Roles are coarse-grained

The system we describe has exactly three roles. However, by having only three

roles, we have created a rather coarse-grained classification system, and a more

fine-grained system is imaginable.

For example, consider the following definitions:

type family F a

type instance F Int = Char

type instance F Bool = Char

type instance F [a] = ()

— F’s parameter has a nominal role, as do all type family parameters

data Bar a = MkBar (F a)

type role Bar nominal
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Is it safe to coerce a Bar Int to a Bar Bool? Unravelling definitions, we see that this is

so. Yet, coercing Bar Int to Bar [Double] is clearly not safe. GHC assigns a nominal

role to the parameter of Bar, but this choice of role eliminates the possibility of the

Bar Int to Bar Bool coercion.

In order to express this, we would need to assign Bar’s parameter a role that

corresponds to the equivalence relation generated by the type family F, i.e. the

relation between types that are mapped to representationally equal types by F.

To expand this example, consider T, which refers back to the F above:

data T a = MkT (F a)

Values of type T a share a representation with those of type T b precisely when F a

is coercible to F b. With an expanded language for roles, we can imagine setting a’s

role to say that any changes to a must respect the definition of F in order for T a

to be coercible to T b.

Going down this route would turn our current three-role system into one with a

very rich structure of equivalence relations, indexed by which type family (or even

type families) are to be respected.

We could similarly imagine expressing the relation that certain type class instances

are to be respected; this could allow the coercion of a Map Int v to a Map Age v

precisely when Int’s and Age’s Ord instances correspond.

8.3.2 Equality does not propagate roles

What role should be assigned to a parameter with an equality constraint involving

a phantom? According to the rules in our formalism, such a parameter would get a

nominal role. Consider the following type:

data T a b where

MkT :: (a ∼ b) ⇒ a → T a b

Role inference assigns both parameters to have nominal roles.

But this is stricter than necessary, as it disallows certain coercions. Inspection of

the type definition shows us that the second parameter, b, is used only in the equality

constraint with a. Additionally, ignoring the equality constraint for a moment, a is

used only representationally. So we can conclude that T τ τ has the same run-time

representation as T σ σ, whenever τ has the same run-time representation as σ. Yet,

the role mechanism is not expressive enough to prove this.

8.4 Extending roles to families

8.4.1 Roles on type and data families

In GHC today, all type and data family parameters have nominal roles, because a

type or data family can pattern-match on its parameters. For example:

type family TF a

type instance TF Int = Double

type instance TF Age = Char
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Clearly, TF Int is not representationally equal to TF Age.

Yet, it would be sensible to extend the idea of roles to type and data families.

A family with a non-nominal parameter would need extra checks on its instance

declarations, to make sure that they are compatible with the choice of roles. For

example:

type role If nominal representational representational

type family If (a :: Bool) b c

type instance If True b c = b

type instance If False b c = c

The above definition, though not accepted by our implementation, is perfectly type

safe. Note that a representational parameter must not be matched on and must

not be used in a nominal context on the right-hand side. The only barrier to

implementing this is the extra complexity for the GHC maintainers and the extra

complexity in the language. If a compelling use case for this comes up, we will likely

add the feature.

8.4.2 Roles on data family instances

Roles on data families follow the same arguments as above. However, we can identify

a separate issue involving roles on data family instances, which are, of course, data

types. For example:

data family DF a

data instance DF (b, Int) = MkDF (Maybe b)

Data family instances are internally desugared into something resembling a type

family instance and a fresh data type declaration, somewhat like this:

type family DF a

type instance DF (b, Int) = DFPairIntInstance b

data DFPairIntInstance c = MkDF (Maybe c)

Here, it is apparent that c can be assigned a representational role, even whilst we

require a nominal role for a.

Role inference for data family instances is not currently implemented, though it

would seem to take only the will to do so.14 Instead, all type variables in a data

family instance are assigned nominal roles. Why? Essentially because there is no

way of writing a role annotation for data family instances. Without the ability to

write role annotations, library writers would be unable to enforce abstraction on

these, and so it is safer just to default these (somewhat uncommon) parameters to

have nominal roles.

14 This task is tracked at https://ghc.haskell.org/trac/ghc/ticket/8177.
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Fig. 13. Data type conversions.

8.5 What else is there to coerce?

The starting point of this work was the observation that there exist expres-

sions, such as map MkHTML, which change the types, but not the representation

of their arguments. We built a system to express and use this in a type-safe

manner.

But Coercible and coerce currently cannot be used in all such situations. Consider

the data types Maybe a and Option a in Figure 13, which have – up to the

names of the constructors – identical definitions. For a given compiler, it may

be the case that a value m :: Maybe a has precisely the same representation as

its counterpart (maybe2option m) :: Option a. If this is indeed the case, we could

replace maybe2option with a zero-cost coercion. We expect that it would be possible

to extend our system to allow for Coercible (Maybe a) (Option a), in the situations

where the compiler makes the two indistinguishable.

Generic programming techniques (Rodriguez et al., 2008) could, if tailored around

this feature, gain performance boosts if the translation between the concrete to the

generic representation no longer incurs a runtime cost.

One could go even further, however. The conversion function maybe2few in the

same Figure may also (depending on the compiler) be operationally the identity. For

example, if the first constructor is tagged 1, the second is tagged 2, and so on, then

(Just x) and (One x) would have the same representation. However, the situation

is now asymmetrical: We may be able to convert from Maybe a to Few a for free,

but the reverse is certainly not true, because the value might use the constructor

Two.

Such unidirectional version of Coercible amounts to explicit inclusive subtyping

and is more complicated than our current symmetric system: For example, the

lifting rule would have to take variance into account: For a type constructor T, does

Coercible (T a) (T b) require Coercible a b, or Coercible b a, or both, or neither?

Furthermore, we would have to adapt our internal language, FC, to work with

explicit subtyping proofs (Crary, 2000; Rémy & Yakobowski, 2010; Cretin & Rémy,

2012).

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 29 Jul 2016 IP address: 50.133.218.66

48 J. Breitner et al.

9 Conclusion

Our focus has been on Haskell, for the sake of concreteness, but we believe that

this work is important beyond the Haskell community. Any language that offers

both generative type abstraction and type-level type discrimination must deal with

their interaction, and those interactions are extremely subtle. We have described one

sound and tractable way to combine the two, including the source language changes,

type inference, core calculus, and meta theory. In doing so, we have given a concrete

foundation for others to build upon.
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A System FC, in full

Throughout this entire proof of type safety, any omitted proof is by (perhaps mutual)

straightforward induction on the relevant derivations.

As usual, all definitions and proofs are only up to α-equivalence. If there is a

name clash, assume a variable renaming to a fresh variable.

A.1 The remainder of the grammar

Φ ::= [a:κ].τ ∼ρ σ axiom types

e ::= expressions

| x variable

| λx :τ.e value abstraction

| Λa:κ.e type abstraction

| λc:φ.e coercion abstraction

| K data constructor

| e1 e2 application

| e τ type application

| e γ coercion application

| caseτ e of alt pattern match

| e � γ cast

| contra γ τ absurdity
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v ::= expression values

| λx :τ.e value abstraction

| Λa:κ.v type abstraction

| λc:φ.e coercion abstraction

| K τ γ e applied data constructor

alt ::= K a c x → e alternative in pattern match

ψ ::= value types

| D data type (not newtypes)

| (→) arrow

| (⇒) prop. arrow

| (∼κ
ρ) equality

| ∀a:κ.τ polymorphism

| ψ τ application

Note that the value form Λa:κ.v requires that the expression inside the Λ itself

be a value. This is because the operational semantics ignores type abstractions and

evaluates under them.

A.2 Typing judgements

Note that the statement, for example, a # Γ means that the variable a is fresh in the

context Γ.

� Γ Context validity

� �
Ctx Empty

� Γ a #Γ

� Γ, a:κ
Ctx TyVar

Γ � τ ∼ρ σ : � c # Γ

� Γ, c:φ
Ctx CoVar

Γ � τ : � x #Γ

� Γ, x :τ
Ctx Var

Γ � τ : κ Type kinding

� Γ a:κ ∈ Γ

Γ � a : κ
Ty Var

Γ � τ1 : κ1 → κ2

Γ � τ2 : κ1

Γ � τ1 τ2 : κ2
Ty App

� Γ T : κ

Γ � T : κ
Ty ADT
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� Γ

Γ � (→) : � → � → �
Ty Arrow

� Γ

Γ � (⇒) : � → � → �
Ty PropArrow

� Γ

Γ � (∼κ
ρ) : κ → κ → �

Ty Equality

Γ, a:κ � τ : �

Γ � ∀a:κ.τ : �
Ty ForAll

� Γ F : [a:κ′].κ Γ � τ : κ′

Γ � F (τ) : κ
Ty TyFun

Γ � e : τ Expression typing

� Γ x :τ ∈ Γ

Γ � x : τ
Tm Var

Γ, x :τ � e : σ

Γ � λx :τ.e : τ → σ
Tm Abs

Γ � e1 : τ → σ

Γ � e2 : τ

Γ � e1 e2 : σ
Tm App

Γ, a:κ � e : τ

Γ � Λa:κ.e : ∀a:κ.τ
Tm TAbs

Γ � e : ∀a:κ.σ

Γ � τ : κ

Γ � e τ : σ[τ/a]
Tm TApp

Γ, c:σ1 ∼ρ σ2 � e : τ

Γ � λc:σ1 ∼ρ σ2.e : φ ⇒ τ
Tm CAbs

Γ � e : (σ1 ∼ρ σ2) ⇒ τ

Γ � γ : σ1 ∼ρ σ2

Γ � e γ : τ
Tm CApp

� Γ K : τ

Γ � K : τ
Tm DataCon
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Γ � e : D σ

Γ � τ : �

∀ alti s.t. alti ∈ alt ,

alti = Ki ai ci xi → ei

Ki : ∀a ′
i :κi .∀b ′

i :κ
′
i .φi ⇒ τi → D a ′

i

Γ, ai :κ
′
i , (ci :φi , xi :τi )[σ/a

′
i ][ai/b

′
i ] � ei : τ

alt is exhaustive

Γ � caseτ e of alt : τ
Tm Case

Γ � e : τ1
Γ � γ : τ1 ∼R τ2

Γ � e � γ : τ2
Tm Cast

� � γ : H1 ∼N H2 H1 = H2

Γ � τ : �

Γ � contra γ τ : τ
Tm Contra

A.3 Small-step operational semantics

Because we evaluate under Λ, it is necessary to index the step relation by a typing

environment. In practice, this environment will hold only type variables, never

coercion or term variables.

e1 −→
Γ

e2 Small-step operational semantics

(λx :τ.e1) e2 −→
Γ

e1[e2/x ]
S Beta

(Λa:κ.v ) τ −→
Γ

v [τ/a]
S TBeta

(λc:φ.e) γ −→
Γ

e[γ/c]
S CBeta

alti = K a c x → e′

caseτ0 K τ σ γ e of alt −→
Γ

e′[σ/a][γ/c][e/x ]
S Iota

(v � γ1) � γ2 −→
Γ

v � (γ1 � γ2)
S Trans

e −→
Γ

e′

Λa:κ.e −→
Γ

Λa:κ.e′ S TAbs Cong

e1 −→
Γ

e′
1

e1 e2 −→
Γ

e′
1 e2

S App Cong
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e −→
Γ

e′

e τ −→
Γ

e′ τ
S TApp Cong

e −→
Γ

e′

e γ −→
Γ

e′ γ
S CApp Cong

e −→
Γ

e′

caseτ e of alt −→
Γ

caseτ e′ of alt
S Case Cong

e −→
Γ

e′

e � γ −→
Γ

e′ � γ
S Cast Cong

η1 = sym (nth1 η0) η2 = nth2 η0

Γ � v : σ1 → σ2

(v � η0) e′ −→
Γ

v (e′ � η1) � η2
S Push

Γ � v : ∀a:κ.σ′

Γ � τ : κ

(v � γ) τ −→
Γ

v τ � γ@τ
S TPush

η11 = nth1 (nth1 η0) η12 = nth2 (nth1 η0)

η2 = nth2 η0 γ′′ = η11 � γ′ � sym η12

Γ � v : (σ1 ∼κ
ρ σ2) ⇒ σ3 Γ � γ′ : σ4 ∼κ

ρ σ5

(v � η0) γ′ −→
Γ

v γ′′ � η2
S CPush

Λa:κ.(v � γ) −→
Γ

(Λa:κ.v ) � (∀a:κ.γ)
S APush

Γ � η : D τ ∼R D τ′

K : ∀a:κ.∀b:κ′.(σ′ ∼ρ σ′′) ⇒ τ′′ → D a

Γ � γ : (σ′ ∼ρ σ′′)[τ/a][σ/b]

γ′ = sym (σ′[nth η/a]ρ) � γ � σ′′[nth η/a]ρ

e′ = e � τ′′[nth η/a]R

caseτ0 (K τ σ γ e) � η of alt −→
Γ

caseτ0 K τ′ σ γ′ e′ of alt
S KPush

The typing context Γ threaded through this relation is used only in the premises

of the “push” rules. Outside of S KPush, these premises are needed only to allow us

to prove the preservation theorem (Theorem 34) without depending on consistency.

In the S KPush rule, however, the typing judgements are necessary to extract

information used in the reduction; specifically, we need the τ′ from the type η, which

appear in the reduct.
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B Global context well-formedness

We assume throughout the paper and this appendix that the global context is well

formed. Here, we explain precisely what can appear in the global context and what

restrictions there are:

1. The global context may contain C : [a:κ].τ ∼ρ σ:

a. a:κ � τ : κ0

b. a:κ � σ : κ0

2. The global context may contain T : κ.

3. The global context may contain K : τ:

a. τ = ∀a:κ.∀b:κ′.φ ⇒ σ → D a

b. � � τ : �

4. The global context may contain F : [a:κ].κ0.

5. For all H , roles(H ) |= H .

C Properties of roles

Lemma 2 (Permutation of role checking). If Ω � τ : ρ and Ω′ is a permutation of Ω,

then Ω′ � τ : ρ.

Lemma 3 (Weakening of role checking). If Ω � τ : ρ, then Ω, a:ρ′ � τ : ρ.

Lemma 4 (Strengthening of role checking). If Ω, a:ρ′ � τ : ρ and a does not appear

free in τ, then Ω � τ : ρ.

Lemma 5 (Nominal roles are infectious). Let a be the free variables in σ. We have

Ω � σ : N if and only if every ai ∈ a is at role N in Ω.

Lemma 6 (Sub-roling). If Ω � τ : ρ and ρ � ρ′, then Ω � τ : ρ′.

This next property is not needed for type safety, but it says that it is always sound

to assign stricter roles to the variables in a type declaration.

Lemma 7 (Context sub-roling). If a:ρ � τ : ρ0 and ρ′ � ρ, then a:ρ′ � τ : ρ0.

Lemma 8 (Roles on type constants). For any Ω, H , and ρ, Ω � H : ρ.

Proof. By case analysis on ρ:

Case ρ = P: By RTy Phantom.

Case ρ = R: By RTy TyConApp.

Case ρ = N: By RTy TyCon.

D Structural properties

D.1 Weakening

Let bnd be a metavariable for a context binding. That is,

bnd ::= a:κ

| c:φ

| x :τ
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Lemma 9 (Type kinding weakening). If Γ,Γ′ � τ : κ and � Γ, bnd ,Γ′, then

Γ, bnd ,Γ′ � τ : κ.

Lemma 10 (Coercion typing weakening). If Γ,Γ′ � γ : φ and � Γ, bnd ,Γ′, then

Γ, bnd ,Γ′ � γ : φ.

Lemma 11 (Term typing weakening). If Γ,Γ′ � e : τ and � Γ, bnd ,Γ′, then Γ, bnd ,Γ′ �
e : τ.

D.2 Substitution

Lemma 12 (Type variable substitution). Suppose Γ � σ : κ1. Then,

1. If � Γ, a:κ1,Γ
′, then � Γ,Γ′[σ/a];

2. If Γ, a:κ1,Γ
′ � τ : κ2, then Γ,Γ′[σ/a] � τ[σ/a] : κ2.

Lemma 13 (Type variable substitution in coercions). If Γ, a:κ,Γ′ � γ : φ and Γ � σ :

κ, then Γ,Γ′[σ/a] � γ[σ/a] : φ[σ/a].

Lemma 14 (Type variable substitution in terms). If Γ, a:κ,Γ′ � e : τ and Γ � σ : κ,

then Γ,Γ′[σ/a] � e[σ/a] : τ[σ/a].

Lemma 15 (Coercion strengthening).

1. If � Γ, c:φ,Γ′, then � Γ,Γ′;

2. If Γ, c:φ,Γ′ � τ : κ, then Γ,Γ′ � τ : κ.

Lemma 16 (Coercion substitution). If Γ, c:φ1,Γ
′ � γ : φ2 and Γ � η : φ1, then

Γ,Γ′ � γ[η/c] : φ2.

Lemma 17 (Coercion substitution in terms). If Γ, c:φ,Γ′ � e : τ and Γ � η : φ, then

Γ,Γ′ � e[η/c] : τ.

Lemma 18 (Term strengthening).

1. If � Γ, x :τ,Γ′, then � Γ,Γ′;

2. If Γ, x :τ,Γ′ � σ : κ, then Γ,Γ′ � σ : κ.

Lemma 19 (Term strengthening in coercions). If Γ, x :τ,Γ′ � γ : φ, then Γ,Γ′ � γ : φ.

Lemma 20 (Term substitution). If Γ, x :σ,Γ′ � e : τ and Γ � e′ : σ, then Γ,Γ′ �
e[e′/x ] : τ.

D.3 Context regularity

Lemma 21 (Type context regularity for types). If Γ � τ : κ, then � Γ.

Lemma 22 (Coercion context regularity). If Γ � γ : φ, then � Γ.

Lemma 23 (Term context regularity). If Γ � e : τ, then � Γ.
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D.4 Classifier regularity

Lemma 24 (Coercion typing regularity). If Γ � γ : τ ∼ρ σ, then Γ � τ ∼ρ σ : �.

Lemma 25 (Coercion homogeneity). If Γ � γ : τ ∼ρ σ, then Γ � τ : κ and Γ � σ : κ.

Proof. Direct from Lemma 24.

Lemma 26 (Term typing regularity). If Γ � e : τ, then Γ � τ : �.

D.5 Determinacy

Lemma 27 (Uniqueness of type kinding). If Γ � τ : κ1 and Γ � τ : κ2, then κ1 = κ2.

Lemma 28 (Uniqueness of coercion typing). If Γ � c : φ1 and Γ � c : φ, then

φ1 = φ2.

Lemma 29 (Uniqueness of term typing). If Γ � e : τ1 and Γ � e : τ2, then τ1 = τ2.

Lemma 30 (Values do not step). For all v , there exists no e such that v −→
Γ

e.

Lemma 31 (Coerced values do not step). For all v and γ, there exists no e such that

(v � γ) −→
Γ

e.

Lemma 32 (Determinacy of evaluation). If e −→
Γ

e1 and e −→
Γ

e2 then e1 = e2.

E Preservation

E.1 Lifting

Lifting is a process that transports coercions through a type. This operation is used

by the rule S KPush to push a coercion into the arguments of a data constructor.

It is defined by the following algorithm, with patterns to be tried in order from top

to bottom. Note that the context Γ is an implicit argument of this function.

τ[γ/b]P = 〈τ[σ/b], τ[σ′/b]〉P (Γ � γ : σ ∼ρ σ′)

a[γ/b]ρ = γi (a = bi ∧ Γ � γi : σ ∼ρ σ
′)

a[γ/b]R = sub γi (a = bi )

a[γ/b]N = 〈a〉 (a /∈ b)

a[γ/b]R = sub 〈a〉 (a /∈ b)

(H τ)[γ/b]R = H(τ[γ/b]ρ) (ρ is a prefix of roles(H))

H [γ/b]N = 〈H〉
(τ1 τ2)[γ/b]ρ = τ1[γ/b]ρ τ2[γ/b]N
(∀a:κ.τ)[γ/b]ρ = ∀a:κ.τ[γ/b]ρ

(F (τ))[γ/b]N = F (τ[γ/b]N)

(F (τ))[γ/b]R = sub F (τ[γ/b]N)

Lemma 33 (Lifting). If:

1. Γ � γ : H τ ∼R H σ;
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2. Γ � τ : κ;

3. Γ � σ : κ;

4. H is not a newtype;

5. Ω � σ0 : ρ0, where b ′ is the type variables in Γ,Γ′

Ω = b ′:N, b : roles(H );

6. Γ, b:κ,Γ′ � σ0 : κ′; and

7. Γ′ contains only type variable bindings.

then,

Γ,Γ′ � σ0[nth γ/b]ρ0
: σ0[τ/b] ∼ρ0

σ0[σ/b]

Proof. First, because Γ′ contains only type variable bindings, then a type variable

substitution has no effect on Γ′ (which can contain only kinds).

If ρ0 = P, then the first equation of the lifting algorithm matches, and we have

σ0[nth γ/b]P = 〈σ0[τ/b], σ0[σ/b]〉P, and we are done, applying Lemma 12.

So, we assume now that ρ0 = P.

Let ρ = roles(H ). We proceed by induction on the derivation of Γ, b:κ,Γ′ � σ0 : κ′.

Each case concludes by the application of the appropriate substitution lemma(s).

Case TY VAR: We know σ0 = a .

Case (a = bi ):

Case (ρ0 = ρi ): In this case, we have σ0[nth γ/b]ρ0
= nthi γ, σ0[τ/b] = τi , and

σ0[σ/b] = σi . Thus, we are done, by Co Nth.

Case (ρ0 = R, ρi = N): Similar, fixing the roles with a use of sub.

Case (ρ0 = N, ρi = N): This case is impossible. We know Ω � a : N. By

inversion then, we know a:N ∈ Ω. Yet, we know that ρi is the ith role in

roles(H ), and by the definition of Ω, a:ρi ∈ Ω. This contradicts ρi = N, and

we are done.

Case (a /∈ b):

Case (ρ0 = N): Here, σ0[nth γ/b]N = 〈σ0〉, σ0[τ/b] = σ0, and σ0[σ/b] = σ0, so

we are done, by Co Refl.

Case (ρ0 = R): Similar to last case, fixing the output role with sub.

Case TY APP:

Case (σ0 = H ′ σ′, ρ0 = R): Here, (H ′ σ′)[nth γ/b]R = H ′(σ′[nth γ/b]ρ′ ), where

ρ′ is a prefix of roles(H ′). Let η = H ′(σ′[nth γ/b]ρ′). Then, we must show

Γ,Γ′ � η : H ′ σ′[τ/b] ∼R H ′ σ′[σ/b]. We will use Co TyConApp. We must

show

Γ,Γ′ � σ′[nth γ/b]ρ′ : σ′[τ/b] ∼ρ′ σ′[σ/b].

We do this by induction, for each σ′
i ∈ σ′. All of the premises of the lifting lemma

are satisfied automatically, except for premise 5. Fix i. We must show Ω � σ′
i : ρ′

i .

We know Ω � H ′ σ′ : R. This can be proved by either RTy TyConApp or

RTy App. If it is by the former, we are done by inversion. If it is by the latter,

then we know Ω � σ′
i : N. We apply Lemma 6, and we are done.
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Other applications: Apply the induction hypothesis. Premise 5 of the lifting lemma

is satisfied by correspondence between RTy App and Co App.

Case TY ADT:

Case (ρ0 = N): Here, H [nth γ/b]N = 〈H 〉, and we are done by Co Refl.

Case (ρ0 = R): Here, H [nth γ/b]R = H (�) and we are done by Co TyConApp.

Cases TY ARROW, TY EQUALITY: Similar to Ty ADT.

Case TY FORALL: By the induction hypothesis. Note that the roles in RTy ForAll

and Co ForAll match up, and that the new binding in RTy ForAll is given a

nominal role, echoed in the definition of Ω in this lemma’s premises.

Case TY TYFUN: By the induction hypothesis, once again noting the correspondence

between RTy TyFam and Co TyFam.

E.2 Preservation

Theorem 34 (Preservation). If Γ � e : τ and e −→
Γ

e′, then Γ � e′ : τ.

Proof. By induction on the derivation of e −→
Γ

e′.

Beta rules: By substitution.

Case S IOTA: We know Γ � caseτ0 K τ σ γ e of alt : τ0, where alti = K a c x → e′.

We must show Γ � e′[σ/a][γ/c][e/x ] : τ0. By inversion on Tm Case, we see

Γ � K τ σ γ e : D τ

K : ∀a ′:κ.∀b ′:κ′.φ ⇒ τ′ → D a ′

Γ, a:κ′, c:φ[τ/a ′][a/b ′], x :τ′[τ/a ′][a/b ′] � e′ : τ0.

We also know that Γ � τ0 : �, which implies that none of the variables a are

mentioned in τ0. We can do induction on the length of τ to see that

Γ � K τ : ∀b ′:κ′.φ[τ/a ′] ⇒ τ′[τ/a ′] → D a ′[τ/a ′].

This simplifies to

Γ � K τ : ∀b ′:κ′.φ[τ/a ′] ⇒ τ′[τ/a ′] → D τ.

Now, we do induction on the length of σ to see that

Γ � K τ σ : φ[τ/a ′][σ/b ′] ⇒ τ′[τ/a ′][σ/b ′] → D τ

and

Γ � σ : κ′.

We can then use repeated application of the type variable substitution lemma to

get

Γ, c:φ[τ/a ′][σ/b ′], x :τ′[τ/a ′][σ/b ′] � e′[σ/a] : τ0.

using the following facts:
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τ0[σ/a] = τ0,

φ[τ/a ′][a/b ′][σ/a] = φ[τ/a ′][σ/b ′],

τ′[τ/a ′][a/b ′][σ/a] = τ′[τ/a ′][σ/b ′].

So, we have

Γ, c:φ[τ/a ′][σ/b ′], x :τ′[τ/a ′][σ/b ′] � e′[σ/a] : τ0.

Starting from the type of K τ σ, we do induction on the length of γ to get

Γ � K τ σ γ : τ′[τ/a ′][σ/b ′] → D τ

and

Γ � γ : φ[τ/a ′][σ/b ′].

Thus, we can use the coercion variable substitution lemma to get

Γ, x :τ′[τ/a ′][σ/b ′] � e′[σ/a][γ/c] : τ0.

Finally, we use analogous reasoning for term arguments e to conclude

Γ � e′[σ/a][γ/c][e/x ] : τ0

as desired.

Case S TRANS: We know that Γ � (v � γ1) � γ2 : τ and need to show that Γ �
v �(γ1 �γ2) : τ. Inversion gives us Γ � v : σ1, Γ � γ1 : σ1 ∼R σ2, and Γ � γ2 : σ2 ∼R τ.

Straightforward use of typing rules shows that Γ � v � (γ1 � γ2) : τ, as desired.

Congruence rules: By induction.

Case S PUSH: We adopt the variable names from the statement of the rule:

η1 = sym (nth1 η0) η2 = nth2 η0

Γ � v : σ1 → σ2

(v � η0) e′ −→
Γ

v (e′ � η1) � η2
S Push

We know that Γ � (v � η0) e′ : σ4 and we must show Γ � (v (e′ � η1)) � η2 : σ4.

Inversion tells us that Γ � η0 : (σ1 → σ2) ∼R (σ3 → σ4) and Γ � e′ : σ3. We can

now see that Γ � η1 : σ3 ∼R σ1 and Γ � η2 : σ2 ∼R σ4. Thus, Γ � e′ � η1 : σ1 and

Γ � v (e′ � η1) � η2 : σ4 as desired.

Case S TPUSH: We adopt the variable names from the statement of the rule:

Γ � v : ∀a:κ.σ′

Γ � τ : κ

(v � γ) τ −→
Γ

v τ � γ@τ
S TPush

We know that Γ � (v �γ) τ : τ′ and we must show that Γ � v τ� γ@τ : τ′. Inversion

tells us that Γ � γ : (∀a:κ.σ′) ∼R (∀a:κ.σ′′), where τ′ = σ′′[τ/a]. We can see that

Γ � γ@τ : σ′[τ/a] ∼R σ
′′[τ/a] and thus that Γ � v τ � γ@τ : τ′ as desired.
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Case S CPUSH: We adopt the variables names from the statement of the rule:

η11 = nth1 (nth1 η0) η12 = nth2 (nth1 η0)

η2 = nth2 η0 γ′′ = η11 � γ′ � sym η12

Γ � v : (σ1 ∼κ
ρ σ2) ⇒ σ3 Γ � γ′ : σ4 ∼κ

ρ σ5

(v � η0) γ′ −→
Γ

v γ′′ � η2
S CPush

We know that Γ � (v � η0) γ
′ : σ6 and we must show that Γ � v γ′′ � η2 : σ6.

Inversion tells us that Γ � η0 : (σ1 ∼ρ σ2 ⇒ σ3) ∼R (σ4 ∼ρ σ5 ⇒ σ6). We can now

see the following:

Γ � η11 : σ1 ∼ρ σ4,

Γ � η12 : σ2 ∼ρ σ5,

Γ � η2 : σ3 ∼ρ σ6,

Γ � γ′′ : σ1 ∼ρ σ2.

Thus, Γ � v γ′′ � η2 : σ6 as desired.

Case S APUSH: We adopt the variable names from the statement of the rule:

Λa:κ.(v � γ) −→
Γ

(Λa:κ.v ) � (∀a:κ.γ)
S APush

By inversion, we have σ and σ′ such that Γ, a:κ � v : σ and Γ, a:κ � γ : σ ∼R σ
′.

We can then see that Γ � Λa:κ.v : ∀a:κ.σ and Γ � ∀a:κ.γ : (∀a:κ.σ) ∼R (∀a:κ.σ′).

We thus get Γ � (Λa:κ.v ) � (∀a:κ.γ) : ∀a:κ.σ′ as desired.

Case S KPUSH: We adopt the variable names from the statement of S KPush:

Γ � η : D τ ∼R D τ′

K : ∀a:κ.∀b:κ′.(σ′ ∼ρ σ′′) ⇒ τ′′ → D a

Γ � γ : (σ′ ∼ρ σ′′)[τ/a][σ/b]

γ′ = sym (σ′[nth η/a]ρ) � γ � σ′′[nth η/a]ρ

e′ = e � τ′′[nth η/a]R

caseτ0 (K τ σ γ e) � η of alt −→
Γ

caseτ0 K τ′ σ γ′ e′ of alt
S KPush

Inversion gives us the premises of this rule. We also know Γ � (K τ σ γ e)�η : D τ′.

We must show Γ � (K τ′ σ γ′ e′) : D τ′. Note that τ0 and the alt do not change, so

we need not worry about them here.

Let φ = (σ′ ∼ρ σ′′). From repeated inversion (and induction on the length of τ),

we can derive

Γ � τ : κ.

Then, from homogeneity of coercions (Lemma 25) (and more induction on τ′), we

see that

Γ � τ′ : κ.

Putting this together, we get

Γ � K τ′ : (∀b:κ′.φ ⇒ τ′′ → D a)[τ′/a]
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or

Γ � K τ′ : ∀b:κ′.φ[τ′/a] ⇒ τ′′[τ′/a] → D τ′.

Taking K τ σ γ e apart further (and induction on σ) tells us

Γ � σ : κ′

and thus that

Γ � K τ′ σ : φ[τ′/a][σ/b] ⇒ τ′′[τ′/a][σ/b] → D τ′[σ/b].

But, from Γ � τ′ : κ, we see that b do not appear in τ′. So, we have

Γ � K τ′ σ : φ[τ′/a][σ/b] ⇒ τ′′[τ′/a][σ/b] → D τ′.

Using techniques similar to that for τ and σ, we can derive the following:

Γ � γ : φ[τ/a][σ/b],

Γ � e : τ′′[τ/a][σ/b].

We need to conclude the following:

Γ � γ′ : φ[τ′/a][σ/b],

Γ � e′ : τ′′[τ′/a][σ/b].

We wish to use the lifting lemma (Lemma 33) to get types for σ′[nth η/a]ρ and

σ′′[nth η/a]ρ. So, we must first establish the premises of the lifting lemma.

1. Γ � η : D τ ∼R D τ′, from the inversion on S KPush (and weakening to change

the context);

2. Γ � τ : κ, as above;

3. Γ � τ′ : κ, as above;

4. D is not a newtype: by choice of metavariable.

5. Ω � σ′ : ρ and Ω � σ′′ : ρ: Here, Ω = b ′:N, a : roles(D), where b ′ are the type

variables bound in Γ, along with the existential variables b. (That is, the Γ′

in the statement of the lifting lemma is b:κ′.) By Roles Data, we can see

that Ω � (σ′ ∼ρ σ′′) : R. This can be established by either RTy TyConApp or

by RTy App. In the former case, we get the desired outcome by looking at

Roles Equality. In the latter case, we see that Ω � σ′
i : N or Ω � σ′′

i : N and

then use role subsumption (Lemma 6).

6. Γ, a:κ, b:κ′ � σ′ : κ′′ and the same for σ′′: This comes from the well-formedness

of the global context, including the type of K .

7. b:κ′ must contain only type variable bindings: It sure does.

Now, we can conclude

Γ, b:κ′ � σ′[nth η/a]ρ : σ′[τ/a] ∼ρ σ′[τ′/a],

Γ, b:κ′ � σ′′[nth η/a]ρ : σ′′[τ/a] ∼ρ σ′′[τ′/a].
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We then do type variable substitution to get

Γ � σ′[nth η/a]ρ[σ/b] : σ′[τ/a][σ/b] ∼ρ σ′[τ′/a][σ/b],

Γ � σ′′[nth η/a]ρ[σ/b] : σ′′[τ/a][σ/b] ∼ρ σ′′[τ′/a][σ/b].

Now, by Co Trans, we can conclude

Γ � γ′ : φ[τ′/a][σ/b]

as desired.

To type the e′, we need to apply the lifting lemma once again, this time to

τ′′[nth η/a]R. Much of our work at establishing premises carries over, except for

these:

5. Ω � τ′′ : R (with Ω as above): This comes directly from the premises of

Roles Data, noting that τ′′ appears in as an argument type to K .

6. Γ, a:κ, b:κ′ � τ′′ : κ′′: This comes from the well-formedness of the global context,

including the type of K .

We then apply the lifting lemma to conclude that

Γ, b:κ′ � τ′′[nth γ/a]R : τ′′[τ/a] ∼R τ′′[τ′/a].

We use type variable substitution to get

Γ � τ′′[nth γ/a]R[σ/b] : τ′′[τ/a][σ/b] ∼R τ′′[τ′/a][σ/b].

We can then conclude

Γ � e′ : τ′′[τ′/a][σ/b]

as desired.

Putting this all together, we see that Γ � K τ′ σ γ′ e′ : D τ′ as originally desired,

and we are done.

F Progress

We prove progress by first establishing that the global context is consistent (defined

below). We do this by placing further restrictions on the global context and

proving that these imply consistency. However, these restrictions are needed only for

consistency, and it is possible to relax or change these in future versions of FC, as

long as the consistency property holds by some mechanism.

F.1 Restrictions on axioms

There are two forms an axiom C : [a:κ].τ ∼ρ σ can have, and different rules apply:

1. Newtype axioms: All of the following must hold:

a. τ = N a ,

b. ρ = R,

c. There must not be two axioms mentioning the same newtype N,
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d. The length of roles(N) must match the arity of the axiom C .

2. Type family axioms: All of the following must hold:

a. τ = F (τ′),

b. ρ = N,

c. The types τ′ must not mention type families,

d. Each b ∈ a must appear exactly once in the list τ′,

e. Consider two axioms C1 : [a:κ].τ1 ∼ρ σ1 and C2 : [b:κ′].τ2 ∼ρ σ2 (where

variables are renamed so that a ∩ b = ∅). Then, if there exists some θ with

θ(τ1) = θ(τ2), it must be that θ(σ1) = θ(σ2).

F.2 Consistency

Definition 35 (Type consistency). Two types τ1 and τ2 are consistent if, whenever

they are both value types:

1. If τ1 = H σ, then τ2 = H σ′;

2. If τ1 = ∀a:κ.σ, then τ2 = ∀a:κ.σ′.

Note that if either τ1 or τ2 is not a value type (as defined in Appendix A.1), then

they are vacuously consistent. Also, recall that a type headed by a newtype is not a

value type.

Definition 36 (Context consistency). The global context is consistent if, whenever

a:κ � γ : τ1 ∼R τ2, τ1 and τ2 are consistent.

In order to prove consistency, we define a non-deterministic type reduction relation

τ�ρ σ, show that the relation preserves value type heads (when ρ is not phantom),

and then show that any well-typed coercion corresponds to a path in the rewrite

relation.

Here is the type rewrite relation:

τ�ρ σ Type reduction

τ�ρ τ
Red Refl

τ1�ρ σ1

τ2�N σ2

τ1 τ2�ρ σ1 σ2
Red App

τ�ρ σ

ρ is a prefix of roles(H )

H τ�R H σ
Red TyConApp

τ�ρ σ

∀a:κ.τ�ρ ∀a:κ.σ
Red ForAll

τ�N σ

F (τ)�ρ F (σ)
Red TyFam
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C : [a:κ].τ1 ∼ρ τ2
ρ � ρ′

τ1[σ/a]�ρ′ τ2[σ/a]
Red Axiom

τ�P σ
Red Phantom

Lemma 37 (Simple rewrite substitution). If τ1�ρ τ2, then τ1[σ/a]�ρ τ2[σ/a].

Proof. By straightforward induction, noting that axioms have no free variables.

Lemma 38 (Rewrite substitution). Let a be the free variables in a type σ. If a:ρ �
σ : R:

1. If τ�ρ τ′, then σ[τ/a]�R σ[τ′/a];

2. If τ�N τ′, then σ[τ/a]�N σ[τ′/a].

Proof. Let Ω = a:ρ. Proceed by induction on the structure of σ.

Case σ = a: There is thus only one free variable, a in σ. The one role ρ is R. For

clause (1), we know τ�R τ
′, so we are done. For clause (2), we know τ�N τ

′, so

we are done.

Case σ = σ1 σ2:

Case (σ can be written as H σ): Here, we assume that the length of σ is at most

the length of roles(H ). If this is not the case, fall through to the “otherwise”

case.

Clause (1): We know τ�ρ τ′. We must show that H σ[τ/a]�R H σ[τ′/a]. We

will use Red TyConApp. Let ρ′ be a prefix of roles(H ) of the same length as

σ. We must show σ[τ/a]�ρ′ σ[τ′/a].

Fix i. We will show that σi [τ/a]�ρ′
i
σi [τ′/a].

Case (ρ′
i = N): In order to use the induction hypothesis, we must show that

for every j such that aj appears free in σi , ρj = N. To use Lemma 5, we

must establish that Ω � σi : N. We can get this by inversion on Ω � H σ : R

– whether by RTy TyConApp or by RTy App, we get Ω � σi : N. So, we

can use the induction hypothesis and we are done.

Case (ρ′
i = R): Inverting a:ρ � H σ : R gives us two possibilities:

Case RTY TYCONAPP: Here, we see Ω � σ : ρ′, and thus, that Ω � σi : R

(because ρ′
i = R). We can then use the induction hypothesis (and using

Lemma 4 to make the contexts line up) and we are done.

Case RTY APP: We invert repeatedly, and we either get Ω � σi : N or

Ω � σi : ρ′
i , depending on whether we hit a RTy TyConApp during the

inversions. In the second case, we proceed as above (the RTy TyConApp

case). In the first case, we use Lemma 6 to conclude Ω � σi : R and use

the induction hypothesis.

Case (ρ′
i = P): We are done by Red Phantom.
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Clause (2): We know that τ�N τ′. We must show that H σ[τ/a]�N H σ[τ′/a].

It is easier to consider the original type σ just as σ1 σ2, not as H σ; fall

through to the next case.

Otherwise:

Clause (1): We know τ�ρ τ′ and need to show that (σ1 σ2)[τ/a]�R(σ1 σ2)[τ′/a].

The fact Ω � σ1 σ2 : R must be by RTy App. So, we can conclude Ω �
σ1 : R and Ω � σ2 : N. Then, we can use the induction hypothesis to get

σ1[τ/a]�R σ1[τ′/a]. To use the induction hypothesis for σ2, we must first

establish that, for every j such that aj appears free in σ2, τj �N τ
′
j . Lemma 5

provides exactly this information, so we get σ2[τ/a]�N σ2[τ′/a]. We are done

by Red App.

Clause (2): We know τ�N τ′ and need to show that (σ1 σ2)[τ/a]�N(σ1 σ2)[τ′/a].

We simply use induction to get

σ1[τ/a]�N σ1[τ′/a];

σ2[τ/a]�N σ2[τ′/a].

We are done by Red App.

Case σ = H : We are done by Red Refl.

Case σ = ∀b:κ.σ′: We assume that we have renamed variables so that b /∈ a . We

see that inverting Ω � ∀b:κ.σ′ : R gives us Ω, b:N � σ′ : R, where a , b are the free

variables in σ′. We can then use the induction hypothesis and we are done by

Red ForAll.

Case σ = F (σ): Inversion on Ω � F (σ) : R gives us Ω � σ : N. We can then apply

Lemma 5 to see that ρ = N. We then use the induction hypothesis repeatedly to

get

σ[τ/a]�N σ[τ′/a].

We are now done by Red TyFam.

Lemma 39 (Sub-roling in the rewrite relation). If τ1�N τ2, then τ1�ρ τ2.

Proof. By straightforward induction on τ1�N τ2.

Lemma 40 (Red App/Red TyConApp). If H τ τ′�R H σ σ′ by Red App, the length

of τ is less than the length of roles(H ), then H τ τ′�R H σ σ′ also by Red TyConApp.

Proof. Fix H . We then proceed by induction on the length of τ.

Base case (H τ′�R H σ′): The premises of Red App give us H �R H and τ′�N σ
′.

Regardless of roles(H ), we can use the sub-roling lemma (Lemma 39) to show

τ′�ρ σ
′ and we are done. (In the case where roles(H ) is empty, an assumption is

violated, and we are done anyway.)

Inductive case: Our inductive hypothesis says: if H τ�R H σ and τ′�N σ
′ (and the

length of roles(H ) is sufficient), then τ�ρ σ and τ′�ρi
σ′, where i = (length of τ)+

1. We must show that, if H τ τ′�R H σ σ′ and τ′′�N σ
′′ (and the length of roles(H )

is sufficient), then τ�ρ σ, τ′�ρi
σ′, and τ′′�ρj

σ′′ (where j = i+ 1).

Inverting H τ τ′�R H σ σ′ gives us several possibilities:
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Case RED REFL: We get τ�ρ σ and τ′�ρi
σ′ by Red Refl. We get τ′′�ρj

σ′′ by

Lemma 39.

Case RED APP: We get our first two desiderata from use of the induction

hypothesis and our last from Lemma 39.

Case RED TYCONAPP: Our first two desiderata come from the premises of

Red TyConApp, and the last one comes from Lemma 39.

Case RED AXIOM: This case is impossible, because there can be only one newtype

axiom for a newtype, and its arity is greater than (length of τ) + 1.

Lemma 41 (Pattern). Let a be the free variables in a type τ. We require that each

variable a is mentioned exactly once in τ and that no type families appear in τ. Then,

if, for some σ, τ[σ/a]�N τ
′, then there exist σ′ such that τ′ = τ[σ′/a] and σ�N σ′.

Proof. We proceed by induction on the structure of τ.

Case τ = a: There is just one free variable (a), and thus just one type σ. We have

σ�N τ
′. Let σ′ = τ′ and we are done.

Case τ = τ1 τ2: Partition the free variables into a list b1 that appear in τ1 and b2 that

appear in τ2. This partition must be possible by assumption. Similarly, partition

σ into σ1 and σ2. We can see that τ1[σ1/b1] τ2[σ2/b2]�N τ
′. Thus, must be by

Red App (noting that all newtype axioms are at role R). Thus, τ′ = τ′
1 τ

′
2 and

τ1[σ1/b1]�N τ
′
1 and τ2[σ2/b2]�N τ

′
2. We then use the induction hypothesis to get

σ′
1 and σ′

2 such that τ′
1 = τ1[σ

′
1/b1] and τ′

2 = τ2[σ
′
2/b2]. We conclude that σ′ is the

combination of σ′
1 and σ′

2, undoing the partition done earlier.

Case τ = H : Trivial.

Case τ = ∀b:κ.τ0: We first note that, according to the definition of a , b /∈ a . We wish

to use the induction hypothesis, but we must be careful because τ0 may mention

b multiple times. So, we linearise τ0 into τ′
0, replacing every occurrence of b with

fresh variables b ′. (Note that b ′ can be empty.) We know that (∀b:κ.τ0)[σ/a]�N τ
′.

We note that (∀b:κ.τ0)[σ/a] = ∀b:κ.(τ0[σ/a]) = ∀b:κ.(τ′
0[σ/a][b/b ′]). (We have

abused notation somewhat in the second substitution. There is only one b; it is

substituted for every variable in b ′.) Let σ′′ be σ appended with the right number of

copies of b. Let a ′ be a appended with b ′. Then, we can say ∀b:κ.(τ′
0[σ

′′/a ′])�N τ
′.

We invert to get that τ′ = ∀b:κ.τ′′ and τ′
0[σ

′′/a ′]�N τ
′′. We can now use the

induction hypothesis to get σ′′′ such that τ′ = τ[σ′′′/a ′] and σ′′�N σ′′′. But, we can

see that, b steps only to itself. Thus, the last entries in σ′′′ must be the same list

of bs that σ′′ has. We let σ′ be the prefix of σ′′′ without the bs, and we are done.

Case τ = F (τ): Impossible, by assumption.

Lemma 42 (Patterns). Let a be the free variables in a list of types τ. Assume each

variable a is mentioned exactly once in τ and that no type families appear in τ. If, for

some σ, τ[σ/a]�N τ′, then there exist σ′ such that τ′ = τ[σ′/a] and σ�N σ′.

Proof. By induction on the length of τ.

Base case: Trivial.

Inductive case: We partition and recombine variables as in the τ1 τ2 case in the

previous proof and proceed by induction.
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Lemma 43 (Local diamond). If τ�ρ σ1 and τ�ρ σ2, then there exists σ3 such that

σ1�ρ σ3 and σ2�ρ σ3.

Proof. If ρ = P, then the result is trivial, by Red Phantom. So, we assume ρ = P.

If σ1 = τ or σ2 = τ, the result is trivial. So, we assume that neither reduction is by

Red Refl.

By induction on the structure of τ:

Case τ = a: We note that the left-hand side of an axiom can never be a bare

variable, and so the only possibility of stepping is by Red Refl. We are done.

Case τ = τ1 τ2: Suppose ρ = N. All axioms at nominal role have a type family

application on their left-hand side, so Red Axiom cannot apply. Thus, only

Red App can be used, and we are done by induction.

Now, we can assume ρ = R. If τ1 τ2 cannot be rewritten as H τ (for some H and

some τ), then the only applicable rule is Red App (noting that relevant axiom

left-hand sides can indeed be written as H τ) and we are done by induction.

So, we now rewrite τ as H τ0. There are six possible choices of the two

reductions, amongst Red App, Red TyConApp, and Red Axiom. We handle each

case separately:

Case RED APP/RED APP: We are done by induction.

Case RED APP/RED TYCONAPP: We apply Lemma 40 and finish by induction.

Case RED APP/RED AXIOM: Rewrite σ1 = σ11 σ12. We know then that τ1�R σ11

and τ2�N σ12. (Recall that τ1 τ2 = τ = H τ0.) We also know that H τ0�R σ2

by a newtype axiom C : [a:κ].H a ∼R σ0, where σ2 = σ0[τ0/a].

By induction, we can discover that σ11 has the form H σ – we know that

τ1 cannot reduce by Red Axiom because the restrictions on axioms say that

newtype axioms are unique, and the axiom used on τ has a higher arity than

any axiom that could be used on τ1. Thus, σ1 = H σ σ12. The same axiom C

applies here. Let σ′ = σ, σ12. So, we can step σ1 to σ3 = σ0[σ′/a] by Red Axiom.

Now, we must show σ2�R σ3. We wish to apply the rewrite-substitution lemma

(Lemma 38). We must show that τ0�ρ σ′, where a:ρ � σ0 : R. This last fact

is exactly what appears in the premise to Roles Newtype (which, in turn,

is guaranteed by the well-formedness of the global context). Now, we know

τ = H τ0 and σ1 = H σ′, and that τ�R σ1 by Red App. We also know that an

axiom is applicable to τ. Thus, the length of τ must be the length of roles(H ), by

context well-formedness. So, we can use Lemma 40 to get τ0�ρ σ′, as desired.

We then apply Lemma 38 to conclude σ2�R σ3, and we are done.

Case RED TYCONAPP/RED TYCONAPP: We are done by induction.

Case RED TYCONAPP/RED AXIOM: We see that σ1 = H σ′ where ρ is a prefix

of roles(H ) and τ0�ρ σ′. We also see that C : [a:κ].H a ∼R σ0 and that

σ2 = σ0[τ0/a].

Let σ3 = σ0[σ′/a]. We can see that σ1�R σ3 by Red Axiom. And, by Lemma 38

(the rewrite-substitution lemma), we see that σ2�R σ3. So, we are done.

Case RED AXIOM/RED AXIOM: Consider the possibility that the two reductions

are by different axioms. This would violate context well-formedness, so it is

impossible. Thus, we can assume that the axiom used in both reductions is
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the same: C : [a:κ].H a ∼R σ0. The only way that σ1 and σ2 can be different

is if the types substituted in the rule conclusion (σ) are different in the two

different reductions. Suppose then that we have σ and σ′ so that σ1 = σ0[σ/a]

and σ2 = σ0[σ′/a]. It must be that τ = H σ and that τ = H σ′. But, this tells

us that σ = σ′ and thus that σ1 = σ2. We are done.

Case τ = H : The only non-trivial step H can make is by Red Axiom. However,

given that only one axiom for a newtype can exist, both steps must step to the

same type, so we are done.

Case τ = ∀a:κ.τ′: We are done by induction.

Case τ = F (τ): Here, two rules may apply. We handle the different possibilities

separately:

Case RED TYFAM/RED TYFAM: We are done by induction.

Case RED TYFAM/RED AXIOM: Here, we know that σ1 = F (σ), where τ�N σ,

and that σ2 = σ0[σ′/a], where C : [a:κ].F (τ′) ∼N σ0 and τ = τ′[σ′/a].

We wish to use Red Axiom to reduce F (σ). We apply Lemma 42 to get σ′′

such that σ = τ′[σ′′/a] and σ′�N σ′′. We then use Red Axiom to get σ1�N σ3,

where σ3 = σ0[σ′′/a]. Now, we must show that σ2�N σ3. This comes directly

from Lemma 38, and we are done.

Case RED AXIOM/RED AXIOM:

We have C1 : [a:κ].F (τ1) ∼N σ
′
1 and C2 : [b:κ′].F (τ2) ∼N σ

′
2. We also know that

τ = F (τ1)[σ′/a] and τ = F (τ2)[σ′′/b]. Thus, F (τ1)[σ′/a] = F (τ2)[σ′′/b]. Thus,

[σ′, σ′′/a , b] is a unifier for F (τ1) and F (τ2). Thus, by context well-formedness,

we have σ′
1[σ

′/a] = σ′
2[σ

′′/b]. But, σ1 = σ′
1[σ

′/a] and σ2 = σ′
2[σ

′′/b], and so

σ1 = σ2 and we are done.

Let the notation τ1 ⇔ρ τ2 mean that there exists a σ such that τ1 �∗
ρ σ and

τ2 �∗
ρ σ.

Lemma 44 (Confluence). The rewrite relation �ρ is confluent. That is, if τ �∗
ρ σ1

and τ �∗
ρ σ2, then σ1 ⇔ρ σ2.

Proof. Confluence is a consequence of the local diamond property, Lemma 43.

Lemma 45 (Stepping preserves value type heads). If τ1 is a value type and τ1�R τ2,

then τ2 has the same head as τ1.

Proof. By induction, noting that the left-hand side of well-formed axioms are never

value types.

Lemma 46 (Rewrite relation consistency). If τ1 ⇔R τ2, then τ1 and τ2 are consistent.

Proof. If either τ1 or τ2 is not a value type, then we are trivially done. So, we assume

τ1 and τ2 are value types. By assumption, there exists σ such that τ1 �∗
R σ and

τ2 �∗
R σ. By induction over the length of these reductions and the use of Lemma 45,

we can see that σ must have the same head as both τ1 and τ2. Thus, τ1 and τ2 have

the same head, and are thus consistent.

Lemma 47 (Completeness of the rewrite relation). If Γ binds no coercion variables

and Γ � γ : τ1 ∼ρ τ2, then τ1 ⇔ρ τ2.
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Proof. By induction on Γ � γ : τ1 ∼ρ τ2.

Case CO REFL: Trivial, as ⇔ρ is manifestly reflexive.

Case CO SYM: By induction, as ⇔ρ is manifestly symmetric.

Case CO TRANS: We adopt the variable names in the statement of the rule:

Γ � γ1 : τ1 ∼ρ τ2 Γ � γ2 : τ2 ∼ρ τ3

Γ � γ1 � γ2 : τ1 ∼ρ τ3
Co Trans

By induction, we know τ1 ⇔ρ τ2 and τ2 ⇔ρ τ3. Thus, we must find σ13 such

that τ1 �∗
ρ σ13 and τ3 �∗

ρ σ13. Note that there must be σ12 with τ1 �∗
ρ σ12 and

τ2 �∗
ρ σ12, and there must be σ23 with τ2 �∗

ρ σ23 and τ3 �∗
ρ σ23. Thus, we can

use Lemma 44 (confluence) to find a σ13 such that σ12 �∗
ρ σ13 and σ23 �∗

ρ σ13.

By transitivity of �∗
ρ, we are done.

Case CO TYCONAPP: We know by induction that τ ⇔ρ σ. Let the list of common

reducts be τ′. We can see that H τ �∗
R H τ′ by repeated use of Red TyConApp,

and similarly for H σ �∗
R H τ′. Thus, H τ′ is our common reduct and we are

done.

Case CO TYFAM: We are done by induction and repeated use of Red TyFam.

Case CO APP: We are done by induction and repeated use of Red App.

Case CO FORALL: We are done by induction and repeated use of Red ForAll.

Case CO PHANTOM: We are done by Red Phantom.

Case CO VAR: Not possible, as the context has no coercion variables.

Case CO AXIOM: We are done by Red Axiom.

Case CO NTH: We adopt the variable names in the rule:

Γ � γ : H τ ∼R H σ ρ is a prefix of roles(H ) H is not a newtype

Γ � nthi γ : τi ∼ρi
σi

Co Nth

We know by induction that H τ ⇔R H σ. In other words, there exists some

τ0 such that H τ �∗
R τ0 and H σ �∗

R τ0. We can see by induction on the

number of steps in the derivation (and a nested induction in the Red App case)

that τ0 must have the form H τ′ for some τ′. In particular, note that no axioms

can apply because H is not a newtype. Thus, each step is from either Red App

or from Red TyConApp. However, by Lemma 40, we can consider just the

Red TyConApp case. This says that τi �∗
ρi
τ′
i and σi �∗

ρi
τ′
i , as desired, so we

are done.

Case CO LEFT: We adopt the variable names from the rule:

Γ � γ : τ1 τ2 ∼N σ1 σ2

Γ � τ1 : κ Γ � σ1 : κ

Γ � left γ : τ1 ∼N σ1
Co Left

We know by induction that τ1 τ2 ⇔N σ1 σ2. The steps to reach the common

reduct must all be Red App, because newtype axioms are all at role R. Thus, the

common reduct must be τ′
1 τ

′
2, where τ1 �∗

N τ′
1, and σ1 �∗

N τ′
1, so we are done.

Case CO RIGHT: Similar to previous case.

Case CO INST: We adopt the variable names from the rule:

Γ � γ : ∀a:κ.τ1 ∼ρ ∀a:κ.σ1 Γ � τ : κ

Γ � γ@τ : τ1[τ/a] ∼ρ σ1[τ/a]
Co Inst
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We know by induction that ∀a:κ.τ1 ⇔ρ ∀a:κ.σ1. We can easily see by inspection

of the rewrite relation that the common reduct must have the form ∀a:κ.τ0 for

some τ0. We can also see by a straightforward induction that τ1 �∗
ρ τ0 and

σ1 �∗
ρ τ0. We must show that τ1[τ/a] �∗

ρ τ0[τ/a] and σ1[τ/a] �∗
ρ τ0[τ/a].

These facts come from an induction over the lengths of the derivations and the

use of the simple rewrite substitution lemma, Lemma 37.

Case CO SUB: We adopt the variable names in the rule:

Γ � γ : τ ∼N σ

Γ � sub γ : τ ∼R σ
Co Sub

We know that τ ⇔N σ and we need τ ⇔R σ. This follows by induction over the

lengths of the reduction and the use of Lemma 39.

Lemma 48 (Consistency). The global context is consistent.

Proof. Take a γ such that a:κ � γ : τ1 ∼R τ2. By the completeness of the rewrite

relation (Lemma 47), we see that τ1 ⇔R τ2. But, the rewrite relation consistency

lemma (Lemma 46) tells us that τ1 and τ2 are consistent. Thus, the context admits

only consistent coercions and is itself consistent.

F.3 Progress

Lemma 49 (Canonical forms).

1. If Γ � v : τ1 → τ2, then v is either λx :τ1.e
′ or K τ γ e.

2. If Γ � v : ∀a:κ.τ, then v is either Λa:κ.v ′ or K τ.

3. If Γ � v : φ ⇒ τ, then v is either λc:φ.e′ or K τ γ.

4. If Γ � v : D σ, then v is K τ γ e.

Note that, following Haskell’s lazy semantics, data constructors do not evaluate

their arguments before pattern matching.

Lemma 50 (Value types). If Γ � v : τ, then τ is a value type.

Proof. If v is an abstraction, then the result is trivial. So, we assume that v = K τ γ e.

Induction on the lengths of the lists of arguments yields

K : ∀a:κ.∀b:κ′.φ ⇒ σ → D a .

We can see (again, by induction on the argument lists) that no matter what K is

applied to, its type will always be a value type, headed by one of ∀, ⇒, → or D, all

of which form value types.

Theorem 51 (Progress). If a:κ � e : τ, then either e is a value or a coerced value, or

e −→
a:κ

e′ for some e′.

Note that, unlike most proofs of progress, here we allow type variables in the

context. This is necessary to deal with evaluation under Λ.

Proof. We proceed by induction on the typing judgement a:κ � e : τ.
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Case TM VAR: Cannot happen in a context without term variables.

Case TM ABS: Trivial.

Case TM APP: We know e = e1 e2. By induction, we know that e1 is either a value,

a coerced value, or steps to e′
1. If e1 steps, we are done by S App Cong. If e1 is a

value, the canonical forms lemma now gives us several cases:

Case e1 = λx :τ.e3: We are done by S Beta.

Case e1 = K τ γ e: Then, e1 e2 is a value.

If e1 is a coerced value v � γ, then by the value types lemma (Lemma 50) and the

consistency lemma (Lemma 48), the type of v must be headed by (→). We are

done by S Push.

Case TM TABS: We know e = Λa:κ.e1. By induction, either e1 steps to e′
1, or e1

is a value or a coerced value. If e1 steps to e′
1, we are done by S TAbs Cong.

Otherwise if e1 is a value, then Λa:κ.e1 is also a value. If e1 is a coerced value

v � γ, then we are done by S APush.

Case TM TAPP: Similar to Tm App case.

Case TM CABS: Trivial.

Case TM CAPP: Similar to Tm App case.

Case TM DATACON: e is a value.

Case TM CASE: We adopt the variable names from the rule:

Γ � e : D σ

Γ � τ : �

∀ alti s.t. alti ∈ alt ,

alti = Ki ai ci xi → ei

Ki : ∀a ′
i :κi .∀b ′

i :κ
′
i .φi ⇒ τi → D a ′

i

Γ, ai :κ
′
i , (ci :φi , xi :τi )[σ/a

′
i ][ai/b

′
i ] � ei : τ

alt is exhaustive

Γ � caseτ e of alt : τ
Tm Case

We know by induction that e is a value, a coerced value, or e −→
a:κ

e′ for some e′.

If e steps, then we are done by S Case Cong.

We see that e has a value type. Therefore (Lemmas 50 and 48), if it has the form

v �γ, the value v has a type headed by Δ as well. Thus, (Lemma 49) v = K τ γ e and

we apply S KPush, noting that the premises are all satisfied by straightforward

use of typing judgements.

The final case is that e is a value. By the canonical forms lemma, we see that

e = K τ γ e. Thus, S Iota applies, noting that the match must be exhaustive.

Case TM CAST: We adopt the variable names from the rule:

Γ � e : τ1
Γ � γ : τ1 ∼R τ2

Γ � e � γ : τ2
Tm Cast

By induction, we know that e is a value, a coerced value, or e −→
a:κ

e′.

If e steps, we are done by S Cast Cong.

If e is a value, then e � γ is a coerced value, and we are done.

If e is a coerced value, then we are done by S Trans.
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Case TM CONTRA: We adopt the variable names from the rule:

� � γ : H1 ∼N H2 H1 = H2

Γ � τ : �

Γ � contra γ τ : τ
Tm Contra

By completeness of the rewrite relation (Lemma 47), we know that H1 ⇔N H2.

But, if H �N H ′, then H = H ′ (by induction on H �N H ′, noting that all newtype

axioms are at role R). So H1 = H2, contradicting a premise to this rule. Thus, this

case cannot happen.

G Role inference

Lemma 52 (Walking). Let a be the parameters to some type constant T . For some

type σ, let b be the free variables in σ that are not in a. Let ρ be a list of roles of

the same length as a. Let Ω = a:ρ, b:N.

If walk(T , σ) makes no change to the role of any of the a, then Ω � σ : R.

Proof. By induction on the structure of σ:

Case σ = a ′: By assumption, it must be that a ′:R ∈ Ω or a ′:N ∈ Ω. In either case,

we can derive Ω � a ′ : R, so we are done.

Case σ = σ1 σ2: We check if σ can also be written as H ′ τ.

Case σ = H ′ τ: Let ρ′ = roles(H ′). In order to conclude Ω � H ′ τ : R, we will

show that Ω � τ : ρ′. Fix i; we will show Ω � τi : ρ′
i . Here, we have three cases:

Case ρ′
i = N: By assumption, it must be that all the free variables in τi are

assigned to N in Ω. Thus, by Lemma 5, we have Ω � τi : N and we are done.

Case ρ′
i = R: By assumption, it must be that walk(T , τi ) makes no change. We

then use the induction hypothesis to say that Ω � τi : R, and we are done.

Case ρ′
i = P: We are done by RTy Phantom.

Other applications: We wish to use RTy App. Thus, we must show that Ω � σ1 : R

and Ω � σ2 : N. For the former, we see that walk(T , σ1) must make no change,

and we are done by induction. For the latter, we see that all the free variables

in σ2 must be assigned to N, and we are done by Lemma 5.

Case σ = H : We are done by immediate application of RTy TyConApp.

Case σ = ∀a ′:κ.σ1: We are done by induction, noting that in RTy ForAll, a ′ gets

assigned role N when checking σ1. This matches our expectations that the type

variables b are at role N in the inductive hypothesis.

Case σ = F (τ): Repeated use of Lemma 5 tells us that Ω � τ : N. We are done by

RTy TyFam.

Theorem 53. The role inference algorithm always terminates.

Proof. First, we observe that the walk procedure always terminates, as it is struc-

turally recursive.

For the algorithm to loop in step 4, a role assigned to a variable must have

changed. Yet, there are a finite number of such variables, and each variable may be
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updated only at most twice (from P to R and from R to N). Thus, at some point no

more updates will happen and the algorithm will terminate.

Theorem 54 (Role inference is sound). After running the role inference algorithm,

roles(H ) |= H will hold for all H .

Proof. We handle the data type case first. Fix a D. We will show that roles(D) |= D.

Because the role inference algorithm has terminated, we know that walk(D, σ) has

caused no change for every σ that appears as a coercion type or term-level argument

type in a constructor for D. Choose a constructor K , such that

K : ∀a:κ.∀b:κ′.φ ⇒ σ → D a .

Let ρ = roles(D) and Ω = a:ρ, b:N. We have satisfied the premises of the walking

lemma (Lemma 52), and thus we can conclude that Ω � σ : R. We have shown

roles(D) |= D by Roles Data.

The newtype case is similar, using the right-hand side of the newtype definition

in place of σ.

Lemma 55 (Stumbling). Let a be the parameters to some type constant T . For some

type σ, let b be the free variables in σ that are not in a. Let ρ be a list of roles of

the same length as a. Let Ω = a:ρ, b:N.

If walk(T , σ) were modified to skip one of its attempts to mark a variable, then it

is not possible to conclude Ω � σ : R.

Proof. By induction on the structure of σ:

Case σ = a ′: If that mark were not done, then Ω would contain a ′:P; this clearly

violates Ω � a ′ : R.

Case σ = σ1 σ2: We check if σ can also be written as H ′ τ.

Case σ = H ′ τ: Let ρ′ = roles(H ′). Fix i.

Case ρ′
i = N: If we do not mark every free variable in τi as N, then it would be

impossible to conclude Ω � τi : N, by Lemma 5. Thus, we would not be able

to conclude Ω � H ′ τ : R by RTy TyConApp. What about by RTy App?

This, too, would require Ω � τi : N, which we are unable to do.

Case ρ′
i = R: By induction, it is not possible to conclude Ω � τi : R, and

thus impossible to use RTy TyConApp. What about RTy App? This would

require Ω � τi : N, which is not possible via the contrapositive of Lemma 6.

Case ρ′
i = P: There is no marking to be done here, so the assumption that walk

is modified is false.

Other applications: Suppose the skipped marking were in the recursive call. Then,

by induction, it is not possible to conclude Ω � σ1 : R. Thus, it is not possible

to conclude Ω � σ1 σ2 : R by RTy App.

Now, suppose the skipped marking is when marking all free variables in σ2 as

N. In this case, we know that Ω � σ2 : N is impossible (by Lemma 5) and thus

we cannot use RTy App.

Case σ = H : No mark was skipped, so the assumption that walk is modified is

false.
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Case σ = ∀a ′:κ.σ1: We are done by induction, noting that in RTy ForAll, a ′ gets

assigned role N when checking σ1. This matches our expectations that the type

variables b are at role N in the inductive hypothesis.

Case σ = F (τ): If one of the variables free in the τ were not marked as N, then it

would be impossible to conclude Ω � τi : N for that τi (by Lemma 5. Thus, we

would be unable to use RTy TyFam.

Theorem 56 (Role inference is optimal). Suppose H has no role annotation. After

running the role inference algorithm, any loosening of the roles assigned to H (a

change from ρ to ρ′, where ρ � ρ′ and ρ = ρ′) would violate roles(H ) |= H .

Proof. Every time the role inference algorithm changes an assigned role from ρ′ to ρ,

it is the case that ρ � ρ′ and ρ = ρ′. Thus, all we must show is that every change the

algorithm makes is necessary – that is, not making the change would then violate

roles(H ) |= H .

Role inference runs only on algebraic data types, so we need only concern

ourselves with T s, not general H s. In both the data type and newtype cases,

showing roles(T ) |= T requires showing Ω � σ : R, where Ω = a:ρ, b:N and a are

the parameters to T and b are the remaining free variables of σ. (In the newtype

case, b is empty.) The list of roles ρ is roles(T ). So, we must show that skipping any

change in the walk(T , σ) algorithm means that Ω � σ : R would not be derivable.

This is precisely what Lemma 55 shows and so we are done.

Theorem 57 (Role annotations only tighten roles). Suppose a role annotation assigns

roles ρ to H . If roles ρ′ were inferred for a definition H ′ identical to H but missing

H ’s role annotation, then ρ � ρ′.

Proof. By Theorem 54, we know roles(H ) |= H . Yet, by Theorem 56, we know that

any loosening of the roles of H ′ would violate roles(H ′) |= H ′. The |= judgement does

not consult role annotations; thus ρ |= H implies ρ |= H ′. If roles(H ) were looser

than roles(H ′), we can still derive roles(H ′) |= H ′ thus leading to a contradiction.

We wish to prove a principal roles property, stating that a unique “best” (most

permissive) role assignment exists. To do this, we must consider multiple different

values of roles(H ) for a given H . We thus introduce role assignment environments

Ψ:

Ψ::=� | Ψ,H : ρ.

In effect, the roles operator we use elsewhere is an implicit, global role assignment

environment.

We also introduce the notation sound Ψ to mean ∀H ∈ Ψ,Ψ(H ) |= H .

Finally, we parameterised the judgement Ω � τ : ρ by a role assignment

environment Ψ, writing Ψ; Ω � τ : ρ. The only rule that changes is RTy TyConApp,

which now looks like this:

ρ is a prefix of Ψ(H ) Ψ; Ω � τ : ρ

Ψ; Ω � H τ : R
RTy TyConApp
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Lemma 58 (Roles of an applied type constant). If Ψ; Ω � H τ : R and ρ is a prefix

of Ψ(H ), then Ψ; Ω � τ : ρ.

Proof. Proceed by induction on the length of τ.

Case τ = �: The conclusion is trivial. We are done.

Case τ = σ, σ0: Inversion on Ψ; Ω � H σ σ0 : R gives us two cases:

Case RTY TYCONAPP: This is immediate from the premises RTy TyConApp.

Case RTY APP: We know Ψ; Ω � H σ : R and Ψ; Ω � σ0 : N. Lemma 6 tells

us that Ψ; Ω � σ0 : ρ for any ρ. We are thus done by a use of the induction

hypothesis.

Lemma 59 (Maximising roles). If Ψ1; Ω1 � τ : ρ1 and Ψ2; Ω2 � τ : ρ2 holds, then

max (Ψ1,Ψ2); max (Ω1,Ω2) � τ : max (ρ1, ρ2) holds.

Proof. If either ρ1 or ρ2 is P, then max (ρ1, ρ2) = P and we are done by RTy Phantom.

We thus assume that neither ρ1 nor ρ2 is P. Proceed by induction on the structure

of τ:

Case τ = a: Inverting RTy Var, we must have a:ρ′
1 ∈ Ω1 and a:ρ′

2 ∈ Ω2 for some

ρ′
1 � ρ1 and ρ′

2 � ρ2. It must be that max (ρ′
1, ρ

′
2) � max (ρ1, ρ2), and so we are

done with this case.

Case τ = τ1 τ2: We now have several cases, depending on the inversions of Ψ1; Ω1 �
τ1 τ2 : ρ1 and Ψ2; Ω2 � τ1 τ2 : ρ2:

Case RTY TYCONAPP/RTY TYCONAPP: We adopt the metavariable names from

the rule, as written above. If ρ1 is a prefix of Ψ1(H ) and ρ2 is a prefix of

Ψ2(H ), then we know Ψi ; Ωi � τ : ρi . Choose a specific τ ∈ τ. We must prove

max (Ψ1,Ψ2); max (Ω1,Ω2) � τ : max (ρ1, ρ2). We are done by the induction

hypothesis.

Case RTY TYCONAPP/RTY APP: In this case, we know that τ = H σ σ0. We need

to prove max (Ψ1,Ψ2); max (Ω1,Ω2) � τ : R. (We know the role after the colon

is R because of inversion on RTy TyConApp.)

If ρ1, ρ10 is a prefix of Ψ1(H ), then we know Ψ1; Ω1 � σ : ρ1, Ψ1; Ω1 � σ0 : ρ10,

Ψ2; Ω2 � H σ : R, and Ψ2; Ω2 � σ0 : N. Lemma 58 tells us that Ψ2; Ω2 � σ : ρ2

(with ρ2, ρ20 a prefix of Ψ2(H )).

Let ρ3 = max (ρ1, ρ2), where the maximum is computed pointwise. The induction

hypothesis tells us max (Ψ1,Ψ2); max (Ω1,Ω2) � σ : ρ3. Lemma 6 tells us that

Ψ2; Ω2 � σ0 : ρ20 and thus (by the induction hypothesis) that

max (Ψ1,Ψ2); max (Ω1,Ω2) � σ0 : max (ρ10, ρ20).

We can see that ρ3, ρ30 is a prefix of max (Ψ1,Ψ2)(H ) and we are thus done by

RTy TyConApp.

Case RTY APP/RTY APP: Here, we know the following:

• Ψ1; Ω1 � τ1 : ρ1,

• Ψ1; Ω1 � τ2 : N,
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• Ψ2; Ω2 � τ1 : ρ2,

• Ψ2; Ω2 � τ2 : N.

The induction hypothesis gives us max (Ψ1,Ψ2); max (Ω1,Ω2) � τ1 : max (ρ1, ρ2)

and max (Ψ1,Ψ2);max (Ω1,Ω2) � τ2 : N. We are done by RTy App.

Case τ = H : We are done by Lemma 8.

Case τ = ∀a:κ.τ0: We have Ψ1; Ω1, a:N � τ0 : ρ1 and Ψ2; Ω2, a:N � τ0 : ρ2 by inver-

sion on RTy ForAll. Then, max (Ψ1,Ψ2); max (Ω1, a:N,Ω2, a:N) � τ0 : max (ρ1, ρ2)

holds by the induction hypothesis.

It is easy to see this is equivalent to max (Ψ1,Ψ2);max (Ω1,Ω2), a:N � τ0 :

max (ρ1, ρ2) and so we are done by RTy ForAll.

Case τ = F (σ): By induction.

Lemma 60 (Maximal role assignment environments). Assume a given list of constants

H with role assignment environments Ψ1 and Ψ2, both defined over H . If sound Ψ1

and sound Ψ2, then sound max (Ψ1,Ψ2).

Proof. Let Ψ0 = max (Ψ1,Ψ2).

Without loss of generality, choose a specific type constant H ∈ H . We must show

Ψ0(H ) |= H given Ψ1(H ) |= H and Ψ2(H ) |= H . Let ρi = Ψi (H ) for i = 0, 1, 2. By

definition of Ψ0, ρ0 = max (ρ1, ρ2).

Proceed by case analysis on H :

Case H = D: We must proceed by Roles Data:

∀ a , b, σ s.t. K : ∀a:κ.∀b:κ′.φ ⇒ σ → D a ,

∀ τ s.t. τ ∈ σ ∨ τ ∈ φ,

a:ρ, b:N � τ : R

ρ |= D
Roles Data

Fix a particular τ as chosen by the premise of Roles Data. We know both

that Ψ1; a:ρ1, b:N � τ : R and that Ψ2; a:ρ2, b:N � τ : R. We can conclude that

Ψ0; a:ρ0, b:N � τ : R by Lemma 59 and are done with this case.

Case H = N: Inverting Roles Newtype,

C : [a:κ].N a ∼R σ a:ρ � σ : R

ρ |= N
Roles Newtype

we get Ψ1; a:ρ1 � σ : R and Ψ2; a:ρ2 � σ : R. Use Lemma 59 to get Ψ0; a:ρ0 � σ :

R and we are done by Roles Newtype.

Case H = (→): Since Ψ1((→)) |= (→) and Ψ2((→)) |= (→), it must be that Ψ1((→
)) = Ψ2((→)) = R,R. Thus, Ψ0((→)) = R,R and we are done by Roles Arrow.

Case H = (⇒): Similar to previous case.

Case H = (∼ρ): Similar to previous case.

http://journals.cambridge.org


http://journals.cambridge.org Downloaded: 29 Jul 2016 IP address: 50.133.218.66

Safe zero-cost coercions for Haskell 77

Theorem 61 (Principal role assignments). For a given set of type constants H , there

is at most one choice of role assignments roles(H ) that is optimal and such that

roles(H ) |= H .

Proof. With the concept of role assignment environments Ψ at our disposal, we can

restate this theorem: Given Ψ1 and Ψ2 such that both are optimal and both are

sound, it must be that Ψ1 = Ψ2.

We prove by contradiction. Suppose we have optimal, sound Ψ1 and Ψ2 such that

Ψ1 = Ψ2. Lemma 60 tells us that max (Ψ1,Ψ2) is sound. But, if max (Ψ1,Ψ2) differs

from Ψi (for i = 1, 2), then Ψi is not optimal, violating our assumption.

H Type erasure

In order to show that coercions are zero-cost, we prove a type erasure property,

saying that evaluation of an FC expression simulates the evaluation of an expression

in a simpler, erased language, which is devoid of types and coercions. It is this erased

language that is actually evaluated at runtime. As it contains no coercions, we show

that coercions truly are zero-cost.

The definition of the erased language is as follows:

o ::= x | λx .o | λ • .o | o1 o2 | o • | K | case o of ealt erased expressions

ealt ::= K x → o erased case alternative

w ::= λx .o | K o erased values

An erased expression steps according to the following small-step semantics:

o =⇒ o ′

(λx .o1) o2 =⇒ o1[o2/x ]
E Beta

(λ • .o) • =⇒ o
E CBeta

ealti = K x → o ′

caseK • o of ealt =⇒ o ′[o/x ]
E Iota

o1 =⇒ o ′
1

o1 o2 =⇒ o ′
1 o2

E App Cong

o =⇒ o ′

o • =⇒ o ′ • E CApp Cong

o =⇒ o ′

case o of ealt =⇒ case o ′ of ealt
E Case Cong

We translate from FC to the erased language via the erasure operation o = |e|:
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|x | = x

|λx :τ.e| = λx .|e|
|λc:φ.e| = λ • .|e|

|e1 e2| = |e1| |e2|
|Λa:κ.e| = |e|

|e τ| = |e|
|e γ| = |e| •
|K | = K

|caseτ e of alt | = case |e| of |alt |
|e � γ| = |e|

|contra γ τ| = ()

|K a c x → e| = K x → |e|

In the contra case above, the right-hand side is the data constructor ( ) of the type

Unit.

Lemma 62 (Erasing type substitution). For all e, τ, and a, |e[τ/a]| = |e|.

Lemma 63 (Erasing coercion substitution). For all e, γ, and c, |e[γ/c]| = |e|.

Lemma 64 (Erasing term substitution). For all e, e′, and x, |e[e′/x ]| = |e|[|e′|/x ].

Lemma 65 (Erased values do not step). If o =⇒ o ′, then o is not an erased value.

Lemma 66 (Erased stepping is deterministic). If o =⇒ o1 and o =⇒ o2, then o1 = o2.

Theorem 67 (Type erasure). If e −→
a:κ

e′, then either |e| =⇒ |e′| or |e| = |e′|.

Proof. By induction on e −→
a:κ

e′.

Case S BETA: We have e = (λx :τ.e1) e2 and e′ = e1[e2/x ]. Accordingly, we have

|e| = (λx .|e1|) |e2| and |e′| = |e1[e2/x ]|. By E Beta and Lemma 64, we are done.

Case S TBETA: The erasure of the term is unchanged.

Case S CBETA: By E CBeta and coercion substitution.

Case S IOTA: The erased term steps by E Iota. We are done by use of the substitu-

tion lemmas above.

Case S TRANS: The erasure of the term is unchanged.

Case S TABS CONG: By induction.

Case S APP CONG: By induction and E App Cong.

Case S TAPP CONG: By induction.

Case S CAPP CONG: By induction and E CApp Cong.

Case S CASE CONG: By induction and E Case Cong.

Case S CAST CONG: By induction.

Case S PUSH: The erasure of the term is unchanged.

Case S TPUSH: The erasure of the term is unchanged.
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Case S CPUSH: The erasure of the term is unchanged.

Case S APUSH: The erasure of the term is unchanged.

Case S KPUSH: The erasure of the term is unchanged.

Lemma 68 (Erased redexes). If |e| = o and o is not an erased value, then e is not a

value nor a coerced value.

Proof. By induction on the structure of e.

Case e = e1 e2: For |e1 e2| = o to be an erased value, |e1| must also be an erased

value (headed by K ). The induction hypothesis tells us that e1 is not a value (and

must not be headed by K ). Thus, e is not a value.

Case e = Λa:κ.e0: Via the definition of erasure, we have |e0| = o and thus |e0| is

not an erased value. The induction hypothesis tells us that e0 must not then be a

value, and thus e is not a value. (This depends on the fact that the definition of

values requires a value in a type abstraction.)

Case e = e0 τ: Like the e = e1 e2 case.

Case e = e0 γ: Like the e = e1 e2 case.

Case e = e0 � γ: The induction hypothesis tells us that e0 is not a value, and thus

we are done.

Other cases: Trivial: either o is a value or e is not.

Theorem 69 (Types do not prevent evaluation). If a:κ � e : τ and |e| =⇒ o ′, then

e −→
a:κ

e′ and either |e′| = o ′ or |e′| = |e|.

Proof. Since |e| steps, it must not be an erased value (Lemma 65). Thus, e must not

be a value (Lemma 68). By the progress theorem (Theorem 51), we thus know that

e must step to e′. By type erasure (Theorem 67), we can conclude that |e′| = o ′ or

|e′| = |e|, as desired.
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