(207)Pb Spin-Lattice Relaxation in Solid PbMoO(4) and PbCl(2)

Peter A. Beckmann
Bryn Mawr College, pbeckman@brynmawr.edu

Shi Bai

Alexander J. Vega

Cecil Dybowski

Let us know how access to this document benefits you.

Follow this and additional works at: http://repository.brynmawr.edu/physics_pubs

Part of the *Physics Commons*

Custom Citation

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College. http://repository.brynmawr.edu/physics_pubs/34

For more information, please contact repository@brynmawr.edu.
We have measured the ^{207}Pb nuclear spin-lattice relaxation rate R as a function of temperature T at two nuclear magnetic resonance frequencies ω_0 in the ionic solids lead molybdate (PbMoO_4) and lead chloride (PbCl_2). R is unexpectedly large, proportional to T^2, and independent of ω_0. Taken together with previous work in lead nitrate [$\text{Pb}(\text{NO}_3)_2$], these results show that the relaxation does not depend on the nature or rotational motion of the counterion, particularly since the counterion in lead chloride is a single chlorine atom. The theory that explains the observed relaxation rate is reviewed. A second-order Raman process dominates the observed relaxation process. It involves the modulation of the spin-rotation interaction by the lattice vibrations.

I. INTRODUCTION

Solid state nuclear magnetic resonance (SSNMR) relaxation experiments provide information on inter- and intramolecular dynamics in many types of solids. The association of relaxation with a particular dynamical process depends critically on identifying the mechanism of random modulation of the nuclear magnetic environment. For spin-$1/2$ nuclei, the modulation of a variety of spin-lattice interactions leads to nuclear spin relaxation: the nuclear dipole-dipole interaction, the chemical-shielding-anisotropy interaction, the scalar-coupling interaction or conduction electrons, the spin-rotation interaction, and a direct coupling of nuclear spins to paramagnetic centers. A determination of the dominant relaxation mechanism (the interaction and its modulation) relies on experimental hallmarks such as the dependence of the nuclear spin-lattice relaxation rate R on parameters such as temperature T, the NMR frequency $\omega_0 = \gamma B$ (for nuclear magnetogyric ratio γ and applied static magnetic field B), or concentration (of, say, an impurity). It is often assumed that the random process that modulates the interaction is thermally activated, which gives R an exponential dependence on $T^{-1.1,2}$. In the fast motion limit, only the chemical-shielding-anisotropy mechanism exhibits a dependence on NMR frequency, being proportional to ω_0^2. A dependence of R on T and/or ω_0 other than these indicates a very different mechanism for relaxation.

The ^{207}Pb relaxation rate constant in $\text{Pb(NO}_3)_2$ in the solid state follows: \[R = A T^2, \] where A is independent of ω_0. Earlier measurements of R in Ti(NO$_3$)$_2$ show a similar result. The effectiveness of the observed nuclear spin-lattice relaxation is unusual and unexpected ($T_1 = R^{-1}$ values of order of seconds rather than hours at room temperature) for solids without paramagnetic impurities or large-scale molecular motions. As reviewed below, a time-dependent spin-rotation magnetic field caused by angular oscillations of the internuclear vectors due to lattice vibrations predicts Eq. (1), and this mechanism appears to be responsible for the nuclear spin-lattice relaxation.

II. A BRIEF REVIEW OF THE THEORY

We have presented a detailed theory for the nuclear spin-lattice relaxation rate in systems like lead molybdate and lead chloride. This theory predicts a relaxation rate given by Eq. (1). Here we review the main points of this theory with the intention of highlighting its conceptual basis. The model adopts previous work in that it assumes that relaxation is caused by a Raman process involving the interactions between nuclear spins and lattice vibrations via a local, time-dependent, spin-rotation magnetic field $\Delta B(t)$. This field is generated by the relative rotational motion of adjacent atoms participating in transverse vibrational modes. The model places an emphasis on the relation between the local time-
dependent spin-rotation magnetic field $\Delta B(t)$ and the time-dependent angular velocity $\Omega(t)$ of a vibrating atom pair in a solid, in contrast to the conventional description of the spin-rotation interaction of gas molecules where the interaction is related to the angular momentum J. In solid structures, the moment of inertia of a small structural subunit is not well defined and, as such, J is not a meaningful parameter. In a simplified scalar representation, the spin-rotation field is written $\Delta B(t) = \Gamma \Omega(t)$. Thus the spin-rotation interaction is characterized by the magnetorotation constant Γ, rather than by the traditional spin rotation constant C. The magnetorotation constant is determined by the electronic properties of the atoms and the nature of their chemical bonds. Since it is difficult to predict the size of Γ for a small atomic cluster embedded in a solid matrix, we have resorted to order-of-magnitude estimations based on the Γ values of small molecules containing the same nuclei and for which the spin-rotation constants C are known. For freely rotating molecules, the spin-rotation and magnetorotation constants are related through $\hbar \gamma \Gamma = -C I_\mu$ where I_μ is the moment of inertia and γ is the gyromagnetic ratio. Comparison of resulting values across the Periodic Table reveals that the average size of Γ is strongly correlated with the atomic weight, ranging from $\sim 10^{-16}$ T s for hydrogen to $\sim 10^{-13}$ T s for lead.

As a result of the high density of vibrational mode frequencies in a solid, $\Omega(t)$ and $\Delta B(t)$ are randomly fluctuating parameters that can drive nuclear spin-lattice relaxation. Only modes with frequencies in the vicinity of the NMR frequency ω_0 contribute to the relaxation process. Since ω_0 is typically five orders of magnitude smaller than the highest acoustical frequencies, the density of vibrational modes around ω_0 is extremely small, such that the so-called direct process, which is driven by local field fluctuations is highly ineffective. An alternative process is a Raman process where, in addition to the angular velocity Ω, the magnetorotation constant Γ is also modulated by crystal vibrations. This is brought about by the fluctuating strain of the immediate environment of the nucleus under consideration. For instance, when the distance between adjacent atoms changes from the equilibrium length a to a slightly distorted length $a+d$, the magnetorotation constant changes from Γ_0 to $\Gamma = \Gamma_0 (1-\varepsilon d)$, the change being described by the coefficient ε. The fluctuation of ΔB due to two simultaneous vibrational modes affecting Γ and Ω, respectively, allows all pairs of modes whose frequencies differ by ω_0 to participate in the relaxation process. As a result, this Raman process is the dominant relaxation pathway for many heavy spin-1/2 nuclei. Using a general theory of nuclear spin relaxation and assuming that the statistics of the crystal vibrations conform to the Debye model, one can calculate the value of A in Eq. (1) to be

$$A = \frac{2 \pi \sqrt{2} \gamma^2 \alpha^2 \varepsilon^2 \Gamma_0^2 \omega_0 k_B^2}{7m^2 v^4}.$$ \hspace{1cm} (2)

Here, a is the average spacing between the relaxing nucleus and adjacent atoms, m is the average mass of the atoms in the compound, ω_0 is the Debye frequency, v is the speed of sound in the material, and k_B is Boltzmann’s constant.

The parameter Γ_0 is poorly known and so is ε. Rough estimates of Γ_0 from spin-rotation constants of comparable gas molecules and of ε from comparison with a few calculated values published in the literature, allow A to be predicted only to within one or two orders of magnitude. However, this theory is an important development in the understanding of the Raman relaxation process and the prediction that the observed nuclear spin-lattice relaxation rate R is proportional to T^2 and independent of ω_0 is an important advancement.

III. THE EXPERIMENTS

Polycrystalline samples of PbMoO$_4$ and PbCl$_2$ were purchased from Sigma-Aldrich and their quoted purities were 99.999%. Measurements of the 207Pb nuclear spin-lattice relaxation rates R for PbMoO$_4$ and PbCl$_2$ were carried out at 62.6 MHz on a Bruker MSL-300 NMR spectrometer (7.0491 T, with a corresponding proton resonance frequency of 300.130 MHz). The $\pi/2$ pulse width was 2.8 μs. R values were also measured at 41.7 MHz on a Tecmag Discovery NMR spectrometer (4.6954 T, with a corresponding proton resonance frequency of 199.916 MHz and $\pi/2$ pulse width of 3.4 μs). Appropriate phase cycling was used. The NMR spectrum of PbMoO$_4$ is about 150 ppm wide, which is 9.4 kHz at 7.05 T and 6.3 kHz at 4.70 T. The NMR spectrum of PbCl$_2$ is about 550 ppm wide, which is 34 kHz at 7.05 T and 23 kHz at 4.70 T.

In determining spin-lattice relaxation rates R, magnetization-recovery curves at both $\omega_0/2\pi=62.6$ MHz and 41.7 MHz were observed using two techniques, both of which gave the same R values within experimental uncertainty. It is important to apply the same perturbation across the spectrum and to observe the signal in the same way across the spectrum. The first technique was inversion-recovery repeated with phase cycling of the acquisition. It is specifically designed for broad spectra, much broader, in fact than maximum widths of tens of kHz being investigated here. The four parts of the cycle are:

$$\pi - t - \{ \pi/2 - \tau_1 - \pi \} - \tau_2 - \text{acquire(+)} - \tau_{\text{delay}}$$

$$\pi - t - \{ \pi - \tau_3 - \pi/2 - \tau_1 - \pi \} - \tau_2 - \text{acquire(-)} - \tau_{\text{delay}}$$

$$\{ \pi/2 - \tau_1 - \pi \} - \tau_2 - \text{acquire(-)} - \tau_{\text{delay}}$$

$$\{ \pi - \tau_3 - \pi/2 - \tau_1 - \pi \} - \tau_2 - \text{acquire(+)} - \tau_{\text{delay}}.$$ \hspace{1cm} (3)

This detection sequence consists of a spin-echo experiment, but with alternate inversion by insertion of a π pulse and acquisition-phase switching to cancel the effects of acoustic ringing. The third and fourth lines are a standard acquisition sequence of the type used by Neue et al. The added leading π pulse in each of the first two lines inverts the magnetization for creation of the nonequilibrium state required for a standard inversion-recovery sequence. By combining the four sequences with appropriate receiver-phase cycling, the resulting difference signal is directly observed.
The solid-state 207Pb spin-lattice relaxation rate R versus T^2 for PbMoO$_4$ and PbCl$_2$ is shown in Fig. 1. For both samples, we calculated R by integrating the spectrum over four different frequency ranges in the spectrum. To within experimental uncertainty (about $\pm 5\%$), all four R values were the same and gave the same result as integrating over the entire spectrum. Therefore, there is no profile dependence of R. The PbMoO$_4$ data are fitted by linear least-squares analysis to give

$$R = [(2.25 \pm 0.08) \times 10^{-6} \text{ s}^{-1} \text{ K}^{-2}] T^2 + [-0.003 \pm 0.008 \text{ s}^{-1}].$$

Similarly the PbCl$_2$ data are fitted with

$$R = [(1.18 \pm 0.07) \times 10^{-6} \text{ s}^{-1} \text{ K}^{-2}] T^2 + [-0.003 \pm 0.007 \text{ s}^{-1}].$$

For lead compounds, reasonable numerical estimates of the parameters in Eq. (2) lead to $A = 10^{-7} - 10^{-5} \text{ s}^{-1} \text{ K}^{-2}$, in agreement with these experimental results. Unfortunately, our understanding of the way local structure affects the values of the various constants in Eq. (2) is insufficient for an interpretation of the different relaxation rates of lead nitrate, lead molybdate, and lead chloride, in terms of the electronic environments of the lead ion in these three compounds. A difference of a factor of two in the values of R implies that the nature of the anion does not strongly affect the lead nuclear spin-lattice relaxation rate.

V. CONCLUSION

The 207Pb spin-lattice relaxation rates R of 207Pb in PbMoO$_4$ and PbCl$_2$ have been investigated as a function of temperature and magnetic field strength. The similarities of these dependences to those observed for Pb(NO$_3$)$_2$ (Ref. 3) and Tl(NO$_3$)$_2$ (Ref. 4) shows that the relaxation is not a strong function of the type of anion partner. The observed relaxation is consistent with a Raman-process model of nuclear spin relaxation for spin-1/2 nuclei mediated by the spin-rotation interaction. It is predicted that this mechanism...
will only be active for spin-1/2 nuclei with sufficiently large magnetorotation constants, and this presumably correlates closely with the number of electrons. We have previously investigated 111Cd and 113Cd in cadmium molybdate and in cadmium iodide and determined that the Raman spin-rotation process is absent on a scale that observes the relaxation over 1000 s following a perturbation to the Cd nuclear spin system, presumably because the magnetorotation constant Γ is too small. It will be interesting to determine which other heavy-metal spin-1/2 nuclei are strongly affected by this mechanism.

ACKNOWLEDGMENTS

C.R.D. and P.A.B. acknowledge the support of the National Science Foundation under Grants No. CHE-0411790 and No. CHE-0411907.

*Email address: pbeckman@brynmawr.edu