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Abstract
Haskell, as implemented by the Glasgow Haskell Compiler (GHC),
allows expressive type-level programming. The most popular type-
level programming extension is TypeFamilies , which allows users
to write functions on types. Yet, using type functions can cripple
type inference in certain situations. In particular, lack of injectivity
in type functions means that GHC can never infer an instantiation
of a type variable appearing only under type functions.

In this paper, we describe a small modification to GHC that
allows type functions to be annotated as injective. GHC naturally
must check validity of the injectivity annotations. The algorithm to
do so is surprisingly subtle. We prove soundness for a simplification
of our algorithm, and state and prove a completeness property,
though the algorithm is not fully complete.

As much of our reasoning surrounds functions defined by a
simple pattern-matching structure, we believe our results extend
beyond just Haskell. We have implemented our solution on a branch
of GHC and plan to make it available to regular users with the next
stable release of the compiler.

Categories and Subject Descriptors F.3.3 [Logics And Meanings
Of Programs]: Studies of Program Constructs – Type structure;
D.3.1 [Programming Languages]: Formal Definitions and Theory –
Semantics; D.3.2 [Programming Languages]: Language Classifica-
tions – Haskell

Keywords Haskell; type-level programming; type families; func-
tional dependencies; injectivity

1. Introduction
The Glasgow Haskell Compiler (GHC) offers many language ex-
tensions that facilitate type-level programming. These extensions
include generalized algebraic data types (GADTs) (Cheney and
Hinze 2003; Peyton Jones et al. 2006), datatype promotion with
kind polymorphism (Yorgey et al. 2012), and functional dependen-
cies (Jones 2000). But the most widespread1 extension for type-level
programming is for type families, which allow users to define type-
level functions (Chakravarty et al. 2005a,b; Eisenberg et al. 2014)
run by the type checker during compilation. Combined with other

1 Appendix A gives data and describes our methodology for obtaining them.

To appear at Haskell Symposium 2015, Vancouver, Canada

features, they allow expressiveness comparable to that of languages
with dependent types (Lindley and McBride 2013).

However, type families as implemented in GHC have a serious
deficiency: they cannot be declared to be injective. Injectivity
is very important for type inference: without injectivity, some
useful functions become effectively unusable, or unbearably clumsy.
Functional dependencies, which have been part of GHC for many
years, are arguably less convenient (Section 7), but they certainly
can be used to express injectivity. That leaves programmers with an
awkward choice between the two features.

In this paper we bridge the gap, by allowing programmers to
declare their type functions injective, while the compiler checks
that their claims are sound. Although this seems straightforward,
it turned out to be much more subtle than we expected. Our main
contribution is to identify and solve these subtleties. Although our
concrete focus is on Haskell, our findings apply to any language
that defines functions via pattern matching and allows to run them
during compilation. Specifically:

• We introduce a backwards-compatible extension to type families,
which allows users to annotate their type family declarations
with information about injectivity (Section 3).

• We give a series of examples that illustrate the subtleties of
checking injectivity (Section 4.1).

• We present a compositional algorithm for checking whether a
given type family (which may be open or closed) is injective
(Section 4.2), and prove it sound (Section 4.3). We show that
a compositional algorithm cannot be complete, but neverthe-
less give a completeness proof for a sub-case where it holds
(Section 4.4).

• We explain how injectivity information can be exploited by
the type inference algorithm, including elaboration into GHC’s
statically typed intermediate language, System FC (Section 5).

• We describe how to make the injectivity framework work in the
presence of kind polymorphism (Section 6).

• We provide an implementation of our solution in a development
branch of GHC. We expect it to become available to regular
users with the next stable release.

Our work is particularly closely related to functional dependencies,
as we discuss in Section 7, leaving other related work for Section 8.

An extended version of the paper is available online, with proofs
of the theorems (Stolarek et al. 2015).

2. Why Injective Type Families Matter
We begin with a brief introduction to type families, followed by
motivating examples, inspired by real bug reports, that illustrate
why injectivity is important.

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

Haskell’15, September 3-4, 2015, Vancouver, BC, Canada
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σ, τ ::= α Type variable
| H Type constructor
| τ1 τ2 Application
| F τ Saturated type-function application

The forms (τ1 τ2) and (F τ) are syntactically distinct, and do not
overlap despite the similarity of their concrete syntax.

Figure 1. Syntax of types.

2.1 Type Families in Haskell
Haskell (or, more precisely, GHC), supports two kinds of type
family: open and closed2. An open type family (Chakravarty et al.
2005a,b) is specified by a type family declaration that gives its arity,
its kind (optionally), and zero or more type instance declarations
that give its behaviour. For example:

type family F a
type instance F Int = Bool
type instance F [a ] = a → a

The type-instance equations may be scattered across different
modules and are unordered; if they overlap they must be compatible.
We say that two overlapping type family equations are compatible
when any application matching both of these equations reduces, in
one step, to the same result with any of these equations.

A closed type family (Eisenberg et al. 2014) is declared with
all its equations in one place. The equations may overlap, and are
matched top-to-bottom. For example:

type family G a where
G Int = Bool
G a = Char

In both open and closed case the family is defined by zero3 or
more equations, each of form F τ = σ, where the left hand side
(LHS) of the equation is F τ , the right hand side (RHS) is σ, and:

• Every left hand side has the same number of argument types τ ;
this number is the arity of the family.

• Every type variable mentioned on the right must be bound on
the left: ftv(τ) ⊇ ftv(σ).

• The types τ and σ must be monotypes; they contain no for-all
quantifiers.

• In addition, the types τ on the left hand side must be type-
function-free.

For the purposes of Sections 3–5 we restrict our attention to kind-
monomorphic type functions. The generalization to polymorphic
kinds is straightforward – see Section 6.

Type functions may only appear saturated in types. That is, if F
has arity 2, it must always appear applied to two arguments. Figure 1
gives the syntax of (mono-)types.

Finally, type functions may be partial. For example, referring
to F above, the type (F Char) matches no equation. Nevertheless,
the type (F Char) is not immediately an error in Haskell, as one
might expect if F were a term-level function. Instead, (F Char)
is an uninhabited type (except by ⊥), equal to no other type. This
design decision is forced by the notion of open type families, since

2 Associated types (Chakravarty et al. 2005a) are essentially syntactic sugar
for open type families. Everything we say in this paper works equally for
associated types, both in theory and in the implementation. So we do not
mention associated types further, apart from a short discussion in Section 3.3.
3 Empty closed type families are implemented in the development version of
GHC and will be available to regular users with the next stable release.

new types are declared all the time in Haskell, and we could not
possibly insist on giving them a type instance declaration for every
(usually-irrelevant) type family.

2.2 The Need for Injectivity
Our work on injective type families began in response to user
requests4 for this feature. Here is a boiled-down version of one
suggested use case:

class Manifold a where
type Base a
project :: a → Base a
unproject :: Base a → a

id :: forall a. (Manifold a)⇒ Base a → Base a
id = project ◦ unproject

The id function composes unprojection and projection, effectively
normalising the representation of base vectors in a manifold. How-
ever, GHC rejects type signature of id as ambiguous since the type
variable a appears only under type family applications and in the set
of constraints. This means that, at the call site of id , the compiler
is unable to determine how a should be instantiated. For exam-
ple, consider a call (id vec), where vec :: [Double ]. What type
should instantiate a in the call? Clearly, we should pick such a that
Base a = [Double ]. But if Base were not injective, there could be
many valid choices for a , each with its own instance for Manifold .
The choice for a thus affects runtime behaviour – it absolutely must
not be left to the whim of a compiler. Since there is no unique choice,
GHC refrains from guessing, and instead reports a as an ambiguous
type variable.

A similar problem arises in the vector library, which provides
efficient implementation of integer-indexed arrays5. The vector
library defines an open type family, Mutable , that assigns a mutable
counterpart for every immutable vector type:

type family Mutable v

For example, if ByteString is an immutable vector of bytes, and
MByteString is the mutable variant, then we can express the
connection by writing6:

type instance Mutable ByteString = MByteString

The library also provides two functions over vectors:

freeze :: Mutable v → IO v
convert :: (Vector v ,Vector w)⇒ v → w

freeze takes a mutable vector and turns it into an immutable one;
convert converts one kind of vector into another. But now suppose
the programmer writes this:

ftc :: (Vector v ,Vector w)⇒ Mutable v → IO w
ftc mv = do {v ← freeze mv ; return (convert v)}

Again GHC complains that the type of ftc is ambiguous: in a
call (ftc vec), where vec :: MByteString , it is not clear how
to instantiate v . GHC correctly reports v as an ambiguous type
variable.

Current Solution: Proxies To resolve such ambiguities the pro-
grammer must give guidance to the type inference engine. A stan-
dard idiom in cases like these is to use proxy arguments. For example
we could rewrite ftc like this:

4 https://ghc.haskell.org/trac/ghc/ticket/6018
5 https://github.com/haskell/vector/issues/34
6 In the real library, the argument to Mutable is the type constructor for a
vector; but that genererality complicates the example and obscures the main
point, so we use a simpler, monomorphic version here.
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data Proxy a

ftc′ :: (Vector v ,Vector w)
⇒ Proxy v -- NB: extra argument here
→ Mutable v → IO w

ftc′ mv = do {v ← freeze v ; return (convert v)}

Instead of the problematic call (ftc vec) where vec ::MByteString ,
the programmer must supply an explicit proxy argument, thus:

ftc′ (⊥ :: Proxy ByteString) vec

The value of the proxy argument is ⊥; its only role is to tell the type
inference engine to instantiate the type variable v to ByteString .

This works, but it is absurdly clumsy, forcing the programmer to
supply redundant arguments. Why redundant? Because, in the pro-
grammer’s mind, if we know, say, that Mutable a is MByteString
then we know that a must be ByteString . That is, every immutable
vector type has its own unique mutable counterpart; more precisely,
Mutable is an injective function. We simply need a way for the
library author to express that property to the compiler.

Our Solution: Injective Type Families In this paper we therefore
allow programmers to declare a type function to be injective, using
an injectivity annotation, thus:

class Manifold a where
type Base a = r | r → a
...

type family Mutable v = r | r → v

The user names the result of the type family as r and, using syntax
inspired by functional dependencies, declares that the result r
determines the argument. GHC then verifies that the injectivity
annotation provided by the user holds for every type family instance.
During type inference, GHC can exploit injectivity to resolve type
ambiguity. This solves the problems with Manifold and the vector
library with one line apiece – no other changes are required.

3. Injective Type Families
Next we describe our proposed extension, from the programmer’s
point of view.

3.1 Injectivity of Type Families
In the rest of this paper we depend on the following definition of
injectivity for type families, whether open or closed:

Definition 1 (Injectivity). A type family F is n-injective (i.e. injec-
tive in its n’th argument) iff ∀σ, τ : F σ ∼ F τ =⇒ σn ∼ τn
Here σ ∼ τ means that we have a proof of equality of types σ and τ .
So the definition simply says that if we have a proof that F σ is equal
to F τ , then we have a proof that σn and τn are equal. Moreover, if
we know that F τ ∼ τ ′, and τ ′ is known, we can discover values of
injective arguments τn by looking at the defining equation of F that
has right-hand side matching τ ′. Section 5 provides the details.

3.2 Annotating a Type Family with Injectivity Information
Injectivity is a subtle property and inferring it is not necessarily
possible or desirable (see Section 3.4), so we therefore ask the user
to declare it. The compiler should check that the declared injectivity
of a type family is sound.

What syntax should we use for such injectivity annotations? We
wanted to combine full backwards compatibility when injectivity
is not used, and future extensibility (Section 7 discusses the latter).
Definition 1 admits injectivity in only some of the arguments and so
we have to be able to declare that a function is injective in its second
argument (say) but not its first.

To achieve this, we simply allow the programmer to name
the result type and, using a notation borrowed from functional
dependencies (Jones 2000), say which arguments are determined by
the result. For example:

type family F a b c = r | r → a c

The “= r” part names the result type, while the “r → a c” – termed
the injectivity condition – says that the result r determines arguments
a and c, but not b. The result variable may be annotated with a kind,
and the injectivity part is optional. So all of the following are legal
definitions:

type family F a b c
type family F a b c = r
type family F a b c = (r :: ?→ ?) | r → a
type family F a b c = r | r → a c

Examples above use open type families but the syntax also extends
to closed type families, where the injectivity annotation precedes
the where keyword.

3.3 Associated Types
A minor syntactic collision occurs for associated types:

class C a b where
type F a b
type F a b = b

The second line beginning “type F a b” is taken as the default
instance for the associated type (to be used in instances of C in
which F is not explicitly defined). Note that the family and instance
keywords can be omitted for associated types and that the default
instance type F a b = b looks suspiciously like a type family with
a named result type. To avoid this ambiguity, you can only name
the result type with associated types if you also give an injectivity
annotation, thus:

class C a b where
type F a b = r | r → b
type F a b = b

As explained in Section 4, GHC must check instances of injective
type families to make sure they adhere to the injectivity criteria. For
associated type defaults, the checks are made only with concrete
instances (that is, when the default is actually used in a class
instance), not when processing the default declaration. This choice
of behaviour is strictly more permissive than checking defaults at
the class declaration site.

3.4 Why not Infer Injectivity?
One can wonder why we require explicit annotations rather then
inferring injectivity.

For open type families, inferring injectivity is generally impossi-
ble, as the equations are spread across modules and can be added at
any time. Inferring injectivity based only on those equations in the
declaring module would lead to unexpected behaviour that would
arise when a programmer moves instances among modules.

Inferring injectivity on closed type families, however, is theo-
retically possible, but we feel it is the wrong design decision, as
it could lead to unexpected behaviour during code refactoring. An
injectivity declaration states that the injectivity property of a type
family is required for the program to compile. If injectivity were
inferred, the user might be unaware that she is relying on injectivity.
Say our programmer has an inferred-injective type family F . She
then adds a new equation to the definition of F that breaks the in-
jectivity property. She could easily be surprised that, suddenly, she
has compilation errors in distant modules, if those modules (perhaps
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unwittingly) relied on the injectivity of F . Even worse, the newly-
erroneous modules might be in a completely different package. With
the requirement of an explicit annotation, GHC reports an error
at the offending type family equation. To keep matters simple we
restrict ourselves to explicitly-declared injectivity.

4. Verifying Injectivity Annotations
Before the compiler can exploit injectivity (Section 5), it must first
check that the user’s declaration of injectivity is in fact justified. In
this section we give a sound, compositional algorithm for checking
injectivity, for both open and closed type functions.

We want our algorithm to be compositional or modular: that is,
we can verify injectivity of function F by examining only the equa-
tions for F , perhaps making use of the declared injectivity of other
functions. In contrast a non-compositional algorithm would require
a global analysis of all functions simultaneously; that is, a compo-
sitional algorithm is necessarily incomplete. A non-compositional
algorithm would be able to prove more functions injective (Sec-
tion 4.4), but at the expense of complexity and predictability. A
contribution of this paper is to articulate a compositional algorithm,
and to explain exactly what limitations it causes.

Soundness means that if the algorithm declares a function injec-
tive, then it really is; this is essential (Section 4.3). Completeness
would mean that if the function really is injective, then the algorithm
will prove it so. Sadly, as we discuss in Section 4.4, completeness
is incompatible with compositionality. Nevertheless we can prove
completeness for a sub-case.

4.1 Three Awkward Cases
Checking injectivity is more subtle than it might appear. Here are
three difficulties, presented in order of increasing obscurity.

Awkward Case 1: Injectivity is not Compositional First consider
this example:

type family F1 a = r | r → a
type instance F1 [a ] = G a
type instance F1 (Maybe a) = H a

Is F1 injective, as claimed? Even if G and H are injective, there
is no guarantee that F1 is, at least not without inspecting the
definitions of G and H . For example, suppose we have:

type instance G Int = Bool
type instance H Bool = Bool

So both G and H are injective. But F1 is clearly not injective;
for example F1 [Int ] ∼ G Int ∼ Bool ∼ H Bool ∼
F1 (Maybe Bool). Thus, injectivity is not a compositional prop-
erty.

However, it is over-conservative to reject any type function with
type functions in its right-hand side. For example, suppose G and
H are injective, and consider F2 defined thus:

type family F2 a = r | r → a
type instance F2 [a ] = [G a ]
type instance F2 (Maybe a) = H a → Int

Since a list cannot possibly match a function arrow, an equality
(F2 σ ∼ F2 τ) can only hold by using the same equation twice;
and in both cases individually the RHS determines the LHS because
of the injectivity of G and H . But what about these cases?

type family F3 a = r | r → a
type instance F3 [a ] = Maybe (G a)
type instance F3 (Maybe a) = Maybe (H a)

type family F4 a = r | r → a

type instance F4 [a ] = (G a, a, a, a)
type instance F4 (Maybe a) = (H a, a, Int ,Bool)

F3 is not injective, for the same reason as F1 . But F4 is injective,
because, despite calls to two different type families appearing as the
first component of a tuple, the other parts of the RHSs ensure that
they cannot unify.

Awkward Case 2: The Right Hand Side Cannot Be a Bare Vari-
able or Type Family The second awkward case is illustrated by
this example:

type family W1 a = r | r → a
type instance W1 [a ] = a

To a mathematician this function certainly looks injective. But,
surprisingly, it does not satisfy Definition 1! Here is a counter-
example. Clearly we do have a proof of (W1 [W1 Int ] ∼
W1 Int), simply by instantiating the type instance with [a 7→
W1 Int ]. But if W1 was injective in the sense of Definition 1, we
could derive a proof of [W1 Int ] ∼ Int , and that is plainly false!
Similarly:

type family W2 a = r | r → a
type instance W2 [a ] = W2 a

Again W2 looks injective. But we can prove W2 [Int ] ∼W2 Int ,
simply by instantiating the type instance; then by Definition 1, we
could then conclude [Int ] ∼ Int , which is plainly false. So neither
W1 nor W2 are injective, according to our definition. Note that the
partiality of W1 and W2 is critical for the failure case to occur.

Awkward Case 3: Infinite Types Our last tricky case is exempli-
fied by Z here:

type family Z a = r | r → a
type instance Z [a ] = (a, a)
type instance Z (Maybe b) = (b, [b ])

Quick: is Z injective? Are there any types s and t for which
Z [t ] ∼ Z (Maybe s)? Well, by reducing both sides of this
equality that would require (t , t) ∼ (s, [s ]). Is that possible? You
might think not – after all, the two types do not unify. But consider
G , below:

type family G a
type instance G a = [G a ]

(Whether or not G is injective is irrelevant.) Now choose t =
s = G Int . We have Z [G Int ] ∼ (G Int ,G Int) ∼
(G Int , [G Int ]) ∼ Z (Maybe (G Int)). Now use Defi-
nition 1 on the first and last of this chain of equalities, to de-
duce [G Int ] ∼ Maybe (G Int), which is unsound. Indeed
(t , t) ∼ (s, [s ]) holds! And so Z is not injective, according to
Definition 1.

One reasonable way to fix this is to guarantee that all type-level
functions are terminating, so that there are no infinite types like
G Int . This is GHC’s default behaviour (Chakravarty et al. 2005a),
but it comes at the cost of restricting the form of type-function
definitions. (After all, terminination is an undecidable property.)
GHC therefore offers the UndecidableInstances extension, which
lifts the restrictions that guarantee termination, for both type classes
and type functions. If a type function diverges the type checker may
loop, and that seems fair enough.

Our concern with combining injectivity with UndecidableIn-
stances is that the type checker might terminate, but generate an
unsound program, and that is unacceptable. As long as GHC accepts
potentially non-terminating type families, the possibility of such a
disaster is real, and we must guard against it.
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4.2 The Injectivity Check
Equipped with these intuitions, we can give the following injectivity-
check algorithm:

Definition 2 (Injectivity check). A type family F is n-injective iff

1. For every equation F σ = τ :
(a) τ is not a type family application, and
(b) if τ = ai (for some type variable ai ), then σ = a.

2. Every pair of equations F σi = τi and F σj = τj (including
i = j) is pairwise-n-injective.

Clause 2 compares equations pairwise (Section 4.5 discusses
separate compilation). Here is the intuition, which we will make
precise in subsequent sections:

Definition 3 (Intuitive pairwise check). Two equations are pairwise-
n-injective if, when the RHSs are the same, then the n’th argument
on the left hand sides are also the same.

Clause 1 deals with Awkward Case 2, by rejecting equations
whose RHS is a bare type variable or function call. This restriction
is barely noticeable in practice, because any equation rejected by
Clause 1 would also be rejected by Clause 2, if there was more than
one equation. That leaves only single-equation families, such as

type instance F a = G a

which might as well be done with a type synonym. The sole
exception are equations of the form F a b = a , a useful fallthrough
case for a closed type family. We allow this as a special case; hence
1b.

Notice that Clause 1 permits a RHS that is headed by a type
variable or type function application; e.g. F (T a b) = a b or
F [a ] = G a Int , where G has an arity of 1.

4.2.1 Unifying RHSs
In the intuitive injectivity check above, we check if two RHSs are
the same. However, type families are, of course, parameterized over
variables, so the “sameness” check must really mean unification.
For example:

type family G1 a = r | r → a
type instance G1 [a ] = [a ]
type instance G1 (Maybe b) = [(b, b)]

It would be terribly wrong to conclude that G1 is injective, just
because a and (b, b) are not syntactically identical.

Unifying the RHSs will, upon success, yield a substitution. We
want to apply that substitution to the LHSs, to see if they become
syntactically identical. For example, consider:

type family G2 a b = r | r → a b
type instance G2 a Bool = (a, a)
type instance G2 Bool b = (b, Bool)

Unifying the RHSs yields a most-general substitution that sets both
a and b to Bool . Under this substitution, the LHSs are the same,
and thus G2 is injective.

We must be careful about variable names however. Consider G3 :

type family G3 a b = r | r → b
type instance G3 a Int = (a, Int)
type instance G3 a Bool = (Bool , a)

This function is not injective: both G3 Bool Int and G3 Int Bool
reduce to (Bool , Int). But the RHSs, as stated, do not unify: the
unification algorithm will try to set a to both Bool and Int . The
solution is simple: freshen type variables, so that the sets of variables
in the equations being compared are disjoint. In this example, if
we freshen the a in the second equation to b, we get a unifying

U(a, τ) θ=U(θ(a), τ) θ a ∈ dom(θ) (1)
U(a, τ) θ= Just θ a ∈ ftv(θ(τ)) (2)
U(a, τ) θ= Just ([a 7→ θ(τ)] ◦ θ) a 6∈ ftv(θ(τ)) (3)
U(τ, a) θ=U(a, τ) θ (4)

U(σ1 σ2, τ1 τ2) θ=U(σ1, τ1) θ >>= U(σ2, τ2) (5)
U(H ,H ) θ= Just θ (6)

U(F σ,F τ) θ=U(σi , τi) θ >>= F is i-injective (7)
. . . >>= ...etc...
U(σj , τj ) F is j-injective

U(F σ, τ) θ= Just θ (8)
U(τ,F σ) θ= Just θ (9)
U(σ, τ) θ= Nothing (10)

Just θ >>= k= k θ
Nothing>>= k= Nothing

Note that equations (5) and (7) do not overlap, despite appearing to
do so. See the note in Figure 1.

Figure 2. Pre-unification algorithm U .

substitution [a 7→ Bool , b 7→ Int ], and since the LHSs do
not coincide under that substitution, we conclude that G3 is not
injective.

Conveniently, freshening variables and unifying allows us to
cover one other corner case, exemplified in G4 :

type family G4 a b = r | r → a b
type instance G4 a b = [a ]

The type family G4 is not injective in its second argument, and we
can see that by comparing the equation against itself ; that is, when
we say “every pair of equations” in Definition 3 we include the pair
of an equation with itself. When comparing G4 ’s single equation
with itself, variable freshening means that we effectively compare:

type instance G4 a1 b1 = [a1 ]
type instance G4 a2 b2 = [a2 ]

The unifying substitution can be [a1 7→ a2 ]. Applying this to the
LHSs still yields a conflict b1 6= b2 , and G4 is (rightly) discovered
to be non-injective. Summing this all together, we can refine our
intuitive pairwise check as follows:

Definition 4 (Unsound pairwise check). Two equations F σi = τi
and F σj = τj , whose variables are disjoint7, are pairwise-n-
injective iff either

1. Their RHSs τi and τj fail to unify, or
2. Their RHSs τi and τj unify with substitution θ, and θ(σi n) =
θ(σj n).

Alas, as we saw in Awkward Case 1 (Section 4.1), if the RHS of a
type instance can mention a type family, this test is unsound. We
explain and tackle that problem next.

4.2.2 Type Families on the RHS
If the RHS of a type instance can mention a type family, classical
unification is not enough. Consider this example:

type family G5 a = r | r → a
type instance G5 [a ] = [G a ]
type instance G5 Int = [Bool ]

Here, G is some other type family, known to be injective. When
comparing these equations, the RHSs do not unify under the classical
definition of unification (i.e. there is no unifying substitution).

7 We can always make them disjoint by α-conversion.

122



Therefore, under Definition 4, G5 would be accepted as injective.
However, this is wrong: we might have G Int = Bool , in which
case G5 is plainly not injective.

To fix this problem, we need a variant of the unification algorithm
that treats a type family application as potentially unifiable with
any other type. Algorithm U(σ, τ) θ is defined in Figure 2. It takes
types σ and τ and a substitution θ, and returns one of two possible
outcomes: Nothing, or Just φ, where φ extends θ. We say that φ
extends θ iff there is a (possibly empty) θ′ such that φ = θ′ ◦ θ.

The definition is similar to that of classical unification except:

• Equations (8) and (9) deal with the case of a type-function
application; it immediately succeeds without extending the
substitution.

• Equation (7) allows U to recurse into the injective arguments of
a type-function application.

• Equation (2) would fail in classical unification (an “occurs
check”); U succeeds immediately, but without extending the
substitution. We discuss this case in Section 4.2.3.

We often abbreviate U(σ, τ) ∅ as just U(σ, τ), where ∅ is the
empty substitution.

Algorithm U has the following two properties, which may be
proved in a similar manner to the proof of correctness of Robinson’s
unification algorithm.

Property 5 (No false negatives). If U(σ, τ) = Nothing, then σ
and τ are definitely not unifiable, regardless of any type-function
reductions8.

For example U(Int ,Maybe a) = Nothing, because the rigid
structure (here Int , Maybe) guarantees that they are distinct types,
regardless of any substitution for a .

Property 6 (Pre-unifiers). If U(σ, τ) = Just θ and if some φ
unifies σ and τ (that is, φ (σ) ∼ φ (τ)), then φ extends θ.

A result of Just θ indicates that it is possible (but not guaranteed)
that some substitution φ, which extends θ, might make σ and
τ equal. For example U(F a, Int) = Just ∅ because perhaps
when a = Bool we might have a family instance F Bool = Int .
Intuitively, θ embodies all the information that U can discover with
certainty. We say that θ is a pre-unifier of σ and τ and we call U a
pre-unification algorithm.

These properties are just what we need to refine previous defini-
tion of unsound pairwise check:

Definition 7 (Pairwise injectivity with pre-unification). A pair of
equations F σi = τi and F σj = τj , whose variables are disjoint,
are pairwise-n-injective iff either

1. U(τi , τj ) = Nothing, or
2. U(τi , τj ) = Just θ, and θ(σi n) = θ(σj n).

As an example, consider G5 above. Applying the pairwise injectiv-
ity with U test to the two right-hand sides, we findU([G a ], [Bool ])
= Just ∅, because U immediately returns when it encounters the
call G a . That substitution does not make the LHSs identical, so
G5 is rightly rejected as non-injective.

Now consider this definition:

type family G6 a = r | r → a
type instance G6 [a ] = [G a ] -- (1)
type instance G6 Bool = Int -- (2)

8 Readers may be familiar with apartness from previous work (Eisenberg
et al. 2014). To prove the soundness of our injectivity check, we need
U(σ, τ) = Nothing to imply that σ and τ are apart.

Obviously, RHSs of equations (1) and (2) don’t unify. Indeed,
calling U([G a ], Int) yields Nothing and so the pair (1,2) is
pairwise-injective. But the injectivity of G6 really depends on the
injectivity of G : G6 is injective iff G is injective. We discover
this by performing pairwise test of equation (1) with itself (after
freshening). This yields U(G a,G a ′). If G is injective U succeeds
returning a substitution [a 7→ a ′ ] that makes the LHSs identical,
so the pair (1,1) is pairwise-injective. If G is not injective, U still
succeeds, but this time with the empty substitution, so the LHSs do
not become identical; so (1,1) would not be pairwise-injective, and
G6 would violate its injectivity condition.

This test is compositional: we can check each definition sep-
arately, assuming that the declared injectivity of other definitions
holds. In the case of recursive functions, we assume that the declared
injectivity holds of calls to the function in its own RHS; and check
that, under that assumption, the claimed injectivity holds.

4.2.3 Dealing with Infinity
Our pre-unification algorithm also deals with Awkward Case 3 in
Section 4.1, repeated here:

type family Z a = r | r → a
type instance Z [a ] = (a, a)
type instance Z (Maybe b) = (b, [b ])

Classical unification would erroneously declare the RHSs as distinct
but, as we saw in Section 4.1, there is a substitution which makes
them equal. That is the reason for equation (2) in Figure 2: it
conservatively refrains from declaring the types definitely-distinct,
and instead succeeds without extending the substitution. Thus
U((a, a), (b, [b ])) returns the substitution [a 7→ b ] but since that
doesn’t make the LHSs equal Z is rejected as non-injective.

4.2.4 Closed Type Families
Consider this example of a closed type family:

type family G7 a = r | r → a where
G7 Int = Bool
G7 Bool = Int
G7 a = a

The type family G7 is injective, and we would like to recognize it as
such. A straightforward application of the rules we have built up for
injectivity will not accept this definition, though. When comparing
the first equation against the third, we unify the RHSs, getting the
substitution [a 7→ Bool ]. We apply this to the LHSs and compare
Int with Bool ; these are not equal, and so the pair of equations
appears to be a counter-example to injectivity. Yet, something is
amiss: the third equation cannot reduce with [a 7→ Bool ], since the
third equation is shadowed by the second one.

This condition is easy to check for. When checking LHSs with a
substitution derived from unifying RHSs, we just make sure that if
LHSs are different then at least one of the two equations cannot fire
after applying the substitution:

Definition 8 (Pairwise injectivity). A pair of equations F σi = τi
and F σj = τj , whose variables are disjoint, are pairwise-n-
injective iff either

1. U(τi , τj ) = Nothing, or
2. U(τi , τj ) = Just θ, and

(a) θ(σi n) = θ(σj n), or
(b) F θ(σi) cannot reduce via equation i, or
(c) F θ(σj ) cannot reduce via equation j

Note that in an open type family, applying a substitution to an
equation’s LHS will always yield a form reducible by that equation,
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so the last two clauses are always false. As a result, Definition 8
works for both open and closed type families.

4.3 Soundness
We have just developed a subtle algorithm for checking injectivity
annotations. But is the algorithm sound?

Property 9 (Soundness). If the injectivity check concludes that F
is n-injective, then F is n-injective, in the sense of Definition 1.

In the extended version of this paper (Stolarek et al. 2015),
we prove a slightly weaker variant of the property above, and we
conjecture (and implement) the full property. The change we found
necessary was to omit equation (7) from the statement of the pre-
unification algorithm U ; this equation allows algorithm U to look
under injective type families on the RHS. Without that line, a use
of an injective type family in an RHS is treated as is any other
type family. Such a modified pre-unification algorithm labels fewer
functions as injective. For example, it would reject

type family F a = r | r → a
type instance F a = Maybe (G a)

even if G were known to be injective.
The full check is quite hard to characterize: what property,

precisely, holds of a substitution produced by U(τ, σ)? We have
said that this substitution is a pre-unifier of τ and σ, but that fact
alone is not enough to prove soundness. We leave a full proof as
future work.

4.4 Completeness
The injectivity check described here is easily seen to be incomplete.
For example, consider the following collection of definitions:

type family F a = r | r → a
type instance F (Maybe a) = G a
type instance F [a ] = H a

type family G a = r | r → a
type instance G a = Maybe a

type family H a = r | r → a
type instance H a = [a ]

The type function F is a glorified identity function, defined only
over lists and Maybes. It is injective. Yet, our check will reject it,
because it does not reason about the fact that the ranges of G and
H are disjoint. Indeed, as argued at the beginning of Section 4, any
compositional algorithm will suffer from this problem.

Yet, we would like some completeness property. We settle for
this one:

Property 10 (Completeness). Suppose a type family F has equa-
tions such that for all right-hand sides τ :

• τ is type-family-free,
• τ has no repeated use of a variable, and
• τ is not a bare variable.

If F is n-injective, then the injectivity check will conclude that F is
n-injective.

Under these conditions, the pairwise injectivity check becomes
the much simpler unifying pairwise check of Definition 4, which
is enough to guarantee completeness. Note that the conditions
mean that Algorithm U operates as a classical unification algorithm
(effectively eliminating equations (2), (7), (8), and (9) from the
definition of U ) and that we no longer have to worry about the
single-equation checks motivated by Awkward Case 2 (clause 1 of
Definition 2). The proof appears in the extended version of this
paper (Stolarek et al. 2015).

4.5 Separate Compilation
The injectivity check must compare every pair of equations for a
type family F . For closed type families this is straightforward (albeit
quadratic) because all the equations are given together. But for open
type families the type instance declarations may be scattered over
many modules. Is the injectivity check consistent with separate
compilation?

This issue arises for all open type families, regardless of whether
they have injectivity annotations: we must always perform a pairwise
compatibility check (Section 2.1), so it it not a new problem. One
way to solve it would be to perform the check only when compiling
module Main, the module at the top of the module import tree, and
then to compare pairwise every family instance in every module
transitively imported by Main.

That approach would postpone errors too long; for example, a
library author might distribute a library with incompatible type-
family equations, and only the library clients would get the error
message. So in practice GHC makes the compability check when
compiling any module, checking all equations in that module or the
modules it imports. In doing so, GHC can assume that the same
checks have already been performed for every imported module,
and thereby avoid repeating pairwise comparisons that must have
already taken place.

5. Exploiting Injectivity
It is all very well knowing that a function is injective, but how is
this fact useful? There are two separate ways in which injectivity
can be exploited:

Improvement guides the type inference engine, by helping it to fix
the values of as-yet-unknown unification variables. Improvement
comes in two parts: improvement between “wanted” constraints
(Section 5.1) and improvement between wanted constraints and
top-level type-family equations (Section 5.2). These improve-
ment rules correspond directly to similar rules for functional
dependencies, as we discuss in Section 7.

Decomposition of “given” constraints enriches the set of available
proofs, and hence makes more programs typeable (Section 5.3).
Unlike improvement, which affects only inference, decomposi-
tion requires a small change to GHC’s explicitly typed interme-
diate language, System FC.

5.1 Improvement of Wanted Constraints
Suppose we are given these two definitions:

f :: F a → Int
g :: Int → F b

Is the call (f (g 3)) well typed? Yes, but it is hard for a type
inference engine to determine that this is so without knowing about
the injectivity of F . Suppose we instantiate the call to f with a
unification variable α, and the call to g with β. Then we have to
prove that F α ∼ F β; we use the term “wanted constraint” for
constraints that the inference engine must solve to ensure type safety.

We can certainly solve this constraint if we clairvoyantly unify
α := β. But the inference engine only performs unifications that it
knows must hold; we say that it performs only guess-free unification
(Vytiniotis et al. 2011, Section 3.6). Why? Suppose that (in a larger
example) we had this group of three wanted constraints:

F α ∼ F β α ∼ Int β ∼ Bool

Then the right thing to do would be unify α := Int and β := Bool,
and hope that F Int and F Bool reduce to the same thing. Instead
unifying α := β would wrongly lead to failure.
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So, faced with the constraint F α ∼ F β, the inference engine
does not in general unify α := β; so the constraint F α ∼ F β is
not solved, and hence f (g 3) will be rejected. But if we knew that
F was injective, we can unify α := β without guessing.

Improvement (a term due to Mark Jones (Jones 1995, 2000)) is a
process that adds extra "derived" equality constraints that may make
some extra unifications apparent, thus allowing inference to proceed
further without having to make guesses. In the case of an injective
F , improvement adds α ∼ β, which the constraint solver can solve
by unification. In general, improvement of wanted constraint is
extremely simple:

Definition 11 (Wanted improvement). Given the wanted constraint
F σ ∼ F τ , add the derived wanted constraint σn ∼ τn for each
n-injective argument of F .

Why is this OK? Because if it is possible to prove the original
constraint F σ ∼ F τ , then (by Definition 1) we will also have a
proof of σn ∼ τn. So adding σn ∼ τn as a new wanted constraint
does not constrain the solution space. Why is it beneficial? Because,
as we have seen, it may expose additional guess-free unification
opportunities that that solver can exploit.

5.2 Improvement via Type Family Equations
Suppose we have the top-level equation

type instance F [a ] = a → a

and we are trying to solve a wanted constraint F α ∼ (Int → Int),
where α is a unification variable. The top-level equation is shorthand
for a family of equalities, namely its instances under substitutions
for a , including F [Int ] ∼ (Int → Int). Now we can use the
same approach as in the previous section to add a derived equality
α ∼ [Int ]. That in turn will let the constraint solver unify α:=[Int ],
and thence solve the wanted constraint. So the idea is to match the
RHS of the equation against the constraint and, if the match succeeds
add a derived equality for each injective argument.

Matters are more interesting when there is a function call on
the RHS of the top-level equation. For example, consider G6 from
Section 4.2.2, when G is injective:

type family G6 a = r | r → a
type instance G6 [a ] = [G a ]
type instance G6 Bool = Int

Suppose we have a wanted constraint G6 α ∼ [Int ]. Does the
RHS of the equation, [G a ], match the RHS of the constraint [Int ]?
Apparently not; but this is certainly the only equation for G6 that
can apply (because of injectivity). So the argument α must be a list,
even if we don’t know what its element type is. So we can produce
a new derived constraint α ∼ [β ], where β is a fresh unification
variable. This expresses some information about α (namely that it
must be a list type), but not all (the fresh β leaves open what the list
element type might be). We might call this partial improvement.

Partial improvement is very useful indeed! We can now unify
α := [β ], so the wanted constraint becomes G6 [β ] ∼ [Int ]. Now
G6 can take a step, yielding [G β ] ∼ [Int ], and decompose to
get G β ∼ Int . Now the process may repeat, with G instead of
G6 . The crucial points are that (a) the matching step, like the pre-
unification algorithm U , behaves specially for type-family calls; and
(b) we instantiate any unmatched variables with fresh unification
variables. More formally:

Definition 12 (Top-level improvement). Given:

• an equation i of type family F , F σi = τi, and
• a wanted constraint F σ0 ∼ τ0

such that

• M(τi, τ0) = Just θ, and
• F θ(σi) can reduce via equation i

then define θ′ by extending θ with a 7→ α, for every a in σi that is
not in dom(θ), where α is a fresh unification variable; and add a
derived constraint θ′(σi n) ∼ σ0n, for every n-injective argument
of F .

Here M is defined just like U in Figure 2, except lacking
equations (4) and (9). That is, M does one-way matching rather
than two-way unification. (We assume that the variables of the two
arguments to M do not overlap.)

5.3 Decomposing Given Equalities
Consider the following function, where F is an injective type family:

fid :: (F a ∼ F b)⇒ a → b
fid x = x

Should that type-check? Absolutely. We assume that F a ∼ F b,
and by injectivity (Definition 1), we know that a ∼ b. But, arranging
for GHC to compile this requires a change to System FC.

In FC, all type abstractions, applications, and casts are explicit.
FC code uses a proof term, or coercion, that witnesses the truth
of each equality constraint. In FC, fid takes an argument coercion
c :: F a ∼ F b, but needs a coercion of type a ∼ b to cast x :: a to
the desired result type b. With our proposed extension the FC code
for fid will look like this:

fid :: ∀ a b. (F a ∼ F b)⇒ a → b
fid = Λa b → λ(c :: F a ∼ F b) (x :: a)→ x . (nth0 c)

The coercion (nth0 c) is a proof term witnessing a ∼ b. Using nth
to decompose a type family application is the extension required to
FC, as we discuss next.

5.3.1 Adding Type Family Injectivity to FC
To a first approximation, System FC is Girard’s System F, enhanced
with equality coercions. That is, there is a form of expression e . γ
that casts e to have a new type, as shown by the following typing
rule:

Γ ` e : τ1 Γ ` γ : τ1 ∼ τ2
Γ ` e . γ : τ2

TM_CAST

The unusual typing judgement Γ ` γ : τ1 ∼ τ2 says that γ is a
proof, or witness, that type τ1 equals type τ2.

Coercions γ have a variety of forms, witnessing the properties
of equality required from System FC. For example, there are
forms witnessing reflexivity, symmetry, and transitivity, as well
as congruence of application; the latter allows us to prove that types
τ1 τ2 and σ1 σ2 are equal from proofs that τ1 ∼ σ1 and τ2 ∼ σ2.

The coercion form that concerns us here is the one that witnesses
injectivity. In FC the rule looks thus:

Γ ` γ : H τ ∼ H σ

Γ ` nthi γ : τi ∼ σi

CO_NTH

In this rule, H is a type constant (such as Maybe or (→)), all of
which are considered to be injective in Haskell. The coercion nthi γ
witnesses this injectivity by proving equality among arguments from
the equality of the applied datatype constructor.

To witness injective type families, we must add a new rule as
follows:

Γ ` γ : F τ ∼ F σ
F is i-injective

Γ ` nthi γ : τi ∼ σi

CO_NTHTYFAM
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In this rule, F is a type family. We can now extract an equality
among arguments from the equality proof of the type family appli-
cations.

5.3.2 Soundness of Type Family Injectivity
Having changed GHC’s core language, we now have the burden
of proving our change to be type safe. The key lemma we must
consider is the consistency lemma. Briefly, the consistency lemma
states that, in a context with no equality assumptions, it is impossible
to prove propositions like Int ∼ Bool , or (a → b) ∼ IO ().
With the consistency lemma in hand, the rest of the proof of type
safety would proceed as it has in previous publications, for example
Breitner et al. (2014).

Even stating the key lemmas formally would require diving
deeper into System FC than is necessary here; the lemmas and their
proofs appear in the extended version of this paper (Stolarek et al.
2015).

5.4 Partial Type Functions
Both open and closed type families may be partial; that is, defined
on only part of their domain. For example, consider this definition
for an injective function F :

type family F a = r | r → a
type instance F Int = Bool
type instance F [a ] = a → a

The type F [Char ] is equal to Char → Char , by the second
instance above; but F Bool is equal only to itself since it matches
no equation. Nevertheless, F passes our injectivity test (Section 4).

You might worry that partiality complicates our story for in-
jectivity. If we had a wanted constraint F Bool ∼ F Char , our
improvement rules would add the derived equality Bool ∼ Char ,
which is manifestly insoluble. But nothing has gone wrong: the
original wanted constraint was also insoluble (that is, we could not
cough up a coercion that witnesses it), so all the derived constraint
has done is to make that insolubility more stark.

In short, the fact that type functions can be partial does not gum
up the works for type inference.

6. Injectivity in the Presence of Kind
Polymorphism

Within GHC, kind variables are treated like type variables: type
family arguments can include both kinds and types. Thus type
families can be injective not only in type arguments but also in kind
arguments. To achieve this we allow kind variables to be mentioned
in the injectivity condition, just like type variables. Moreover, if
a user lists a type variable b as injective, then all kind variables
mentioned in b’s kind are also marked as injective. For example:

type family G (a :: k1 ) (b :: k2 ) (c :: k1 )
= (r :: k3 ) | r → b k1

type instance G Maybe Int (Either Bool) = Char
type instance G IO Int [ ] = Char
type instance G Either Bool (→) = Maybe

The injectivity annotation on G states that it is injective in b – and
therefore also in b’s kind k2 – as well as kind k1 , which is the kind
of both a and c. We could even declare k3 as injective – the return
kind is also an input argument to a type family.

To support injectivity in kinds our pre-unification algorithm U
needs a small adjustment to make it kind-aware – see modified
equations (2) and (3) in Figure 3. Other definitions described in
Sections 4 and 5 remain unchanged.

In Haskell source, in contrast to within GHC, kind arguments
are treated quite separately from type arguments. Types are always

U(a : κ1, τ : κ2) θ=U(κ1, κ2) θ a ∈ ftv(θ(τ))
U(a : κ1, τ : κ2) θ=U(κ1, κ2) ([a 7→ θ(τ)] ◦ θ) a 6∈ ftv(θ(τ))

Figure 3. Modified equations (2) and (3) from Figure 2 that make
the pre-unification algorithm U kind-aware.

explicit, while kinds are always implicit. This can lead to some
surprising behaviour:

type family P (a :: k0 ) = (r :: k1 ) | r → a
type instance P ’[ ] = ’[ ]

At first glance, P might look injective, yet it is not. Injectivity in a
means injectivity also in k0 . But the argument a and result r can
have different kinds and so k0 is not determined by r . This becomes
obvious if we write kind arguments explicitly using a hypothetical
syntax, where the kind arguments are written in braces:

type instance P {k0} {k1} (’[ ] {k0}) = (’[ ] {k1})
The syntax (’[ ] {k}) indicates an empty type-level list, holding
elements of kind k 9. It is now clear that k0 is not mentioned
anywhere in the RHS, and thus we cannot accept it as injective.

7. Functional Dependencies
Injective type families are very closely related to type classes with
functional dependencies (Jones 2000), which have been part of GHC
for many years. Like injectivity, functional dependencies appear
quite simple, but are remarkably subtle in practice (Sulzmann et al.
2007).

Functional dependencies express a type level function as a
relation. For example, here are type-level functions F and G
expressed using functional dependencies (on the left) and type
families (on the right):

class F a r | a → r type family F a = r
instance F [a ] (Maybe a) type instance F [a ] = Maybe a
instance F Int Bool type instance F Int = Bool

class G a r | a → r type family G a = r

f :: F a r ⇒ a → r f :: a → F a

To express that F and G are injective using functional dependencies,
one adds an additional dependency:

class F a r | a → r , r → a
class G a r | a → r , r → a

This syntax motivates our choice of syntax for injectivity annota-
tions (Section 3.2), and our injectivity check mirrors precisely the
consistency checks necessary for functional dependencies (Jones
2000).

In Section 4.2.2 we discussed the issues that arise when a call to
an injective type family G appears in the RHS of a type instance,
such as:

type instance F (Maybe a) = [G a ]

Precisely the same set of issues arises with functional dependencies,
where the instance declaration would look like:

instance G a rg ⇒ F (Maybe a) [rg ]

This instance declaration would fail the coverage condition of (Jones
2000); in effect, Jones does not allow function calls on the RHS.
This restriction was lifted by Sulzmann et al, via the liberal coverage
condition (Sulzmann et al. 2007), in essentially the same way that
we do.

9 You can see similar output from GHC – without the braces – if you use
-fprint-explicit-kinds.
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Using “improvement” to guide type inference (Section 5), in-
cluding the partial improvement of Section 5.2, was suggested by
Mark Jones for his system of qualified types (Jones 1995), and
was absolutely essential for effective type inference with functional
dependencies (Jones 2000). Indeed, the improvement rules of Sec-
tion 5 correspond precisely to the improvement rules for functional
dependencies (Sulzmann et al. 2007).

7.1 Advantages of Type Families
A superficial but important advantage of type families is simply that
they use functional, rather than relational, notation, thus allowing
programmers to use same programming style at the type level that
they use at the term level. Recognizing this, Jones also proposes
some syntactic sugar to make the surface syntax of functional
dependencies more function-like (Jones 2008). Syntactic sugar
always carries a price, of course: since the actual types will have
quantified constraints that are not visible to the programmer, the
compiler has to work hard to express error messages, inferred types,
and so on, in the form that the programmer expects.

A more substantial difference is that type families are fully
integrated into System FC, GHC’s typed intermediate language.
Consider, for example:

type instance F Int = Bool
data T a where {MkT :: F a → T a }
f :: T Int → Bool
f (MkT x ) = not x

This typechecks fine. But with functional dependencies we would
write

class F a r | a → r
instance F Int Bool
data T a where {MkT :: F a r ⇒ r → T a }

and now the definition of f would be rejected because r is an
existentially captured type variable of MkT . One could speculate on
a variant of System FC that accommodated functional dependencies,
but no such calculus currently exists.

7.2 Advantages of Functional Dependencies
Functional dependencies make it easy to specify more complex
dependencies than mere injectivity. For example10:

data Nat = Zero | Succ a

class Add a b r | a b → r , r a → b
instance Add Zero b b
instance (Add a b r)⇒ Add (Succ a) b (Succ r)

Note the dependency “r a → b”, which says that the result and
first argument (but not the result alone) are enough to fix the second
argument. This dependency leads to an improvement rule: from
the wanted constraint (Add s t1 ) ∼ (Add s t2 ), add the derived
equality t1 ∼ t2 .

Our design can similarly be extended, by writing:

type family AddTF a b = r | r a → b where
AddTF Zero b = b
AddTF (Succ a) b = Succ (AddTF a b)

The check that the injectivity annotation is sound would be an exten-
sion of Definitions 2 and 8, and the improvement rule would mimic
the one for functional dependencies. However, this remains as future
work: we have not yet extended the metatheory or implementation
to accommodate it.

10 Here Nat is being used as a kind, using the DataKinds extension (Yorgey
et al. 2012).

7.3 Summary
So, are type families merely functional dependencies in a different
guise? At a fundamental level, yes: they both address a similar
question in a similar way. But it is always illuminating to revisit
an old landscape from a new direction, and we believe that is very
much the case here, especially since the landscape of functional
dependencies is itself extremely subtle (Sulzmann et al. 2007).
Understanding the connection better is our main item of further
work. For example:

• Adding richer functional dependencies to type families (Sec-
tion 7.2) is an early priority.

• Could we take advantage of the metatheory of functional depen-
dencies to illuminate that of type families; or vice versa?

• What would a version of System FC that truly accommodated
functional dependencies look like?

• Could closed type families move beyond injectivity and func-
tional dependencies by applying closed-world reasoning that
derives solutions of arbitrary equalities, provided a unique solu-
tion exists? Consider this example:

type family J a where
J Int = Char
J Bool = Char
J Double = Float

One might reasonably expect that if we wish to prove (J a ∼
Float), we will simplify to (a ∼ Double). Yet GHC does not
do this as neither injectivity nor functional dependencies can
discover this solution.

8. Other Related Work
8.1 Injectivity for the Utrecht Haskell Compiler
Implementing injective type families for the Utrecht Haskell Com-
piler was proposed by Serrano Mena (2014). These ideas were not
developed further or implemented11. Thus, to our best knowledge,
our work is the first theoretical and practical treatment of injectivity
for Haskell.

8.2 Injectivity in Other Languages
The Agda (Norell 2007) compiler is able to infer head injectivity12,
a notion weaker than the injectivity presented in this paper. For a
function f , if the right-hand sides of all clauses of f immediately
disunify, then f is called head-injective or constructor-headed.
"Immediately disunify" means that the outer-most constructors in
the RHSs are distinct. Knowledge that a function is head-injective
can then be used to generate improvements in the same way it is
used in our solution. Our solution is more powerful: it recurs over
identical constructors, allows type families in RHSs, and permits
declaring injectivity only in some arguments.

Other dependently-typed languages like Coq (The Coq develop-
ment team 2014) or Idris (Brady 2013) do not provide any special
way of declaring that a function is injective. In these languages the
user can prove injectivity of a function using mechanisms provided
by the language (e.g. tactics) and appeal to injectivity explicitly
whenever this property is required to make progress during type
checking. We believe that these languages could benefit from ap-
proach developed here – our results should carry over to these other
languages nicely.

11 Based on private correspondence with Alejandro Serrano Mena.
12 Based on private correspondence with Andreas Abel.
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8.3 Injectivity of Term-Rewriting Systems
Haskell type families share much with traditional term-rewriting
systems (TRSs). (For some general background on TRSs, see Baader
and Nipkow (1998).) In particular, Haskell type family reduction
forms a deterministic constructor term-rewriting system. There has
been some work done on checking TRSs for injectivity, for example
that of Nishida and Sakai (2010). Their work appears to be the
state-of-the-art in the term-rewriting community. Although a close
technical comparison of our work to theirs is beyond the scope
of this paper, Nishida and Sakai restrict their injectivity analysis
to total, terminating systems. Our work also considers partial and
non-terminating functions.

9. Conclusion
With this work, we give users a new tool for more expressive type-
level programming, and one that solves practical problems arising in
the wild (Section 2). It fills out a missing corner of GHC’s support for
type-level programming, and gives an interesting new perspective
on functional dependencies (Section 7).

Our compositional approach for determining injectivity of func-
tions defined by pattern matching may be of more general utility.
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A. Popularity of Selected Language Extensions
for Type-Level Programming

In Section 1 we made a claim that type families are the most pop-
ular language extension for type-level programming in Haskell.
That claim is based on analysis of Hackage, Haskell’s community
package database. We were interested in usage of five language
extensions that in our opinion add the most powerful features to
type-level language: TypeFamilies , GADTs , FunctionalDepen-
dencies , DataKinds and PolyKinds . To measure their popular-
ity we downloaded all packages on Hackage (per list available at
https://hackage.haskell.org/packages/names). Then we
used the grep program to search each package directory for ap-
pearances of strings naming the given language extensions. This
located language extensions enabled both in .cabal files and with
LANGUAGE pragmas. The exact obtained numbers are reported in
Table 1.

Table 1. Popularity of selected type-level programming language
extensions.

Language extension no. of using packages
TypeFamilies 1092
GADTs 612
FunctionalDependencies 563
DataKinds 247
PolyKinds 109

Downside of this approach is that it can give false positives by
finding strings without considering their context inside the source
code. A good example of when this happens is haskell-src-exts
package that does not use any of the above extensions but mentions
them in the parser source code.

All measurements were conducted on a copy of Hackage ob-
tained on 19th February 2015.

128

http://ics.p.lodz.pl/~stolarek/_media/pl:research:stolarek_peyton-jones_eisenberg_injectivity_extended.pdf
http://ics.p.lodz.pl/~stolarek/_media/pl:research:stolarek_peyton-jones_eisenberg_injectivity_extended.pdf
http://ics.p.lodz.pl/~stolarek/_media/pl:research:stolarek_peyton-jones_eisenberg_injectivity_extended.pdf
https://hackage.haskell.org/packages/names

	Injective Type Families for Haskell
	Citation

	Introduction
	Why Injective Type Families Matter
	Type Families in Haskell
	The Need for Injectivity

	Injective Type Families
	Injectivity of Type Families
	Annotating a Type Family with Injectivity Information
	Associated Types
	Why not Infer Injectivity?

	Verifying Injectivity Annotations
	Three Awkward Cases
	The Injectivity Check
	Unifying RHSs
	Type Families on the RHS
	Dealing with Infinity
	Closed Type Families

	Soundness
	Completeness
	Separate Compilation

	Exploiting Injectivity
	Improvement of Wanted Constraints
	Improvement via Type Family Equations
	Decomposing Given Equalities
	Adding Type Family Injectivity to FC
	Soundness of Type Family Injectivity

	Partial Type Functions

	Injectivity in the Presence of Kind Polymorphism
	Functional Dependencies
	Advantages of Type Families
	Advantages of Functional Dependencies
	Summary

	Other Related Work
	Injectivity for the Utrecht Haskell Compiler
	Injectivity in Other Languages
	Injectivity of Term-Rewriting Systems

	Conclusion
	Popularity of Selected Language Extensions for Type-Level Programming

