
Bryn Mawr College Bryn Mawr College

Scholarship, Research, and Creative Work at Bryn Mawr College Scholarship, Research, and Creative Work at Bryn Mawr College

Computer Science Faculty Research and
Scholarship Computer Science

12-2014

Promoting Functions to Type Families in Haskell Promoting Functions to Type Families in Haskell

Richard A. Eisenberg
Bryn Mawr College, rae@cs.brynmawr.edu

Jan Stolarek

Follow this and additional works at: https://repository.brynmawr.edu/compsci_pubs

 Part of the Computer Sciences Commons

Let us know how access to this document benefits you.

Citation Citation
Richard A. Eisenberg "Promoting Functions to Type Families," ACM SIGPLAN Notices - Haskell '14 49.12
(December 2014): 95-106.

This paper is posted at Scholarship, Research, and Creative Work at Bryn Mawr College.
https://repository.brynmawr.edu/compsci_pubs/1

For more information, please contact repository@brynmawr.edu.

https://repository.brynmawr.edu/
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci_pubs
https://repository.brynmawr.edu/compsci
https://repository.brynmawr.edu/compsci_pubs?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=repository.brynmawr.edu%2Fcompsci_pubs%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.brynmawr.edu/open-access-feedback.html
https://repository.brynmawr.edu/compsci_pubs/1
mailto:repository@brynmawr.edu

Final draft submitted for publication at Haskell Symposium 2014

Promoting Functions to Type Families in Haskell

Richard A. Eisenberg
University of Pennsylvania

eir@cis.upenn.edu

Jan Stolarek
Politechnika Łódzka
jan.stolarek@p.lodz.pl

Abstract
Haskell, as implemented in the Glasgow Haskell Compiler (GHC),
is enriched with many extensions that support type-level program-
ming, such as promoted datatypes, kind polymorphism, and type
families. Yet, the expressiveness of the type-level language remains
limited. It is missing many features present at the term level, includ-
ing case expressions, anonymous functions, partially-applied func-
tions, and let expressions. In this paper, we present an algorithm –
with a proof of correctness – to encode these term-level constructs
at the type level. Our approach is automated and capable of pro-
moting a wide array of functions to type families. We also highlight
and discuss those term-level features that are not promotable. In so
doing, we offer a critique on GHC’s existing type system, show-
ing what it is already capable of and where it may want improve-
ment. We believe that delineating the mismatch between GHC’s
term level and its type level is a key step toward supporting depen-
dently typed programming.

We have implemented our approach as part of the singletons
package, available online.

Categories and Subject Descriptors F.3.3 [Logics And Meanings
Of Programs]: Studies of Program Constructs – Type structure;
D.3.1 [Programming Languages]: Formal Definitions and Theory
– Semantics; D.3.2 [Programming Languages]: Language Classi-
fications – Haskell

Keywords Haskell; type-level programming; defunctionalization

1. Introduction
Haskell, especially as implemented in the Glasgow Haskell Com-
piler (GHC), is endowed with a plethora of facilities for type-
level programming. Haskell 98 on its own has type classes (Wadler
and Blott 1989), parametric polymorphism, and inferred higher-
order kinds. Over the past 15 years or so, more and more features
have been added, such as functional dependencies (Jones 2000),
first-class polymorphism (Peyton Jones et al. 2007), generalized
algebraic datatypes (GADTs) (Cheney and Hinze 2003; Peyton
Jones et al. 2006), type families (Chakravarty et al. 2005a,b; Ei-
senberg et al. 2014), and datatype promotion with kind polymor-
phism (Yorgey et al. 2012).

Now, we might ask: Are we there yet?

[Copyright notice will appear here once ’preprint’ option is removed.]

In other words, is type-level programming expressive enough?
To begin to answer this question, we must define “enough.” In this
paper, we choose to interpret “enough” as meaning that type-level
programming is at least as expressive as term-level programming.
We wish to be able to take any pure term-level program and write
an equivalent type-level one.

Our answer to this question: “Almost.” As we describe in more
detail in Section 4, Haskell’s type system as it appears in GHC 7.8
is capable of expressing almost all term-level constructs, including
anonymous functions, partially applied functions, case and let
expressions, and even type classes. However, a few key pieces are
missing. As described by Yorgey et al. (2012) and expanded on by
Weirich et al. (2013), GADTs cannot be promoted. Haskell also
lacks higher-order sorts, which would classify the promotion of
higher-kinded type variables, including the m in Monad m. There
are other limitations, as well; see Section 5.

Despite these limitations, we have found that a wide array of
programs are indeed promotable, using a mechanical translation
implemented in Template Haskell (Sheard and Peyton Jones 2002).
Our implementation is based on work started by Eisenberg and
Weirich (2012) and is part of the singletons package.1

Why might we want to promote all these term-level constructs?
As Haskell inches ever closer to being dependently typed (Weirich
et al. 2013; Gundry 2013; Lindley and McBride 2013), it will
become important to identify precisely which term-level constructs
are available to be used in dependent contexts – that is, which
terms really can be used in types? The present work defines this
subset concretely and helps to set the stage for a dependently-typed
version of Haskell.

We make the following contributions:

• We describe an enhancement to the singletons library, which
promotes term-level definitions to the type level. We focus
only on promoting expressions and declarations as defined in
chapters 3 and 4 of the Haskell 2010 Language Report (Mar-
low 2010). Our implementation relies on many extensions of
GHC 7.8 but without the need to add new features. (Section 4)

• We delimit exactly what features are not promotable under our
implementation, and why these would be impossible to promote
without further enhancements to Haskell. (Section 5)

• Section 6 describes a formalization of Haskell and presents a
proof, given in full in the extended version of this paper (Eisen-
berg and Stolarek 2014), that our promotion algorithm produces
well-kinded types. We also show that, if we assume the cor-
rectness of our implementation of lambda-lifting, a promoted
expression reduces in the same way as the original expression.

• We conclude in Sections 7 and 7.5 with reflections on GHC’s
current type system and some ideas for the future of Haskell in
order to support type-level programming better.

1 cabal install singletons. You will need GHC 7.8.2 or higher.

Eisenberg, Stolarek: Promoting Functions to Type Families in Haskell 1 2014/6/30

A somewhat unexpected contribution of our work is discovery
and posting of nearly 30 GHC bugs. Of these, 15 are related to
Template Haskell and 9 to the type checker.

It is our hope that through the use of the singletons library,
users will be able to experiment with type-level programming with
ease, encouraging the use of a strongly-typed programming style.
We, and others, will also gain more experience with code that can
operate on both the term and type levels, to better inform the design
that may eventually be implemented as part of a dependently-typed
version of Haskell.

2. Types and Kinds
Before presenting our main work, it may be helpful to the reader to
have a brief review of how promotion currently works in Haskell.
This section presents no new results and may be skipped by the
expert reader.

2.1 Datakinds
Haskell has long had a notion of kinds separate from that of types.
A term is classified by a type. Thus, True has the type Bool and
(λx → length x == 0) has the type [a] → Bool . A type, in
turn, is classified by a kind, where the special kind ? classifies
normal types that have values. Thus, Bool has kind ?, Maybe
has kind ? → ?, and the StateT monad transformer has kind
?→ (?→ ?)→ ?→ ?.

Yorgey et al. (2012) describe how certain Haskell algebraic
datatypes can be promoted into new datakinds. A simple example
is Bool . The idea is that a definition

data Bool = True | False

introduces a kind ’Bool with types ’True and ’False.2 We can
now write a datatype like

data OperatingSystem (unixLike :: ’Bool) where
MacOS :: OperatingSystem ’True
Linux :: OperatingSystem ’True
Windows :: OperatingSystem ’False

where we annotate the OperatingSystem type with further infor-
mation that can be used at compile-time.

2.2 Type families
GHC has long supported open type families (Chakravarty et al.
2005b), and with the release of version 7.8 comes their closed
form (Eisenberg et al. 2014). A type family can be viewed as a
function at the type level. As such, type families enable expressive
type-level programming. For example, we can easily define an
IsZero function over type-level natural numbers:

data Nat1 = Zero | Succ Nat1
type family IsZero (n :: ’Nat1) :: ’Bool where

IsZero ’Zero = ’True
IsZero (’Succ n) = ’False

This new feature of closed type families plays a critical role
in the present work because they enable kind inference. Unlike
open type families, closed type families have all of their equations
written in one place, and so GHC can use the equations to infer the
kinds of the type family arguments and result. Indeed, the IsZero
example could have been written without the ’Nat1 and ’Bool
kind annotations.

2 Diverging somewhat from GHC’s parser, we will annotate datakinds with
a ’ to aid the reader.

2.3 Kind polymorphism
Yorgey et al. also introduce kind polymorphism, which allows for
a definition to be abstract in its kinds. For example, we can write a
kind-polymorphic Length function over type-level lists:

type family Length (list :: ’[a]) :: ’Nat1 where
Length ’[] = ’Zero
Length (x ’: xs) = ’Succ (Length xs)

In this code, note that a is a kind variable, as it classifies the
type list. Thus, Length is kind-polymorphic. Kind polymorphism
is naturally essential to promoting type-polymorphic functions.

2.4 Type-level literals
Iavor Diatchki has implemented type-level literals into GHC.3 Two
kinds of type-level literals are allowed: natural numbers and strings.
The use of a numeric literal in a type will produce a type of kind
Nat (separate from our Nat1), and the GHC.TypeLits module
exports several type families (such as + and *) that can manipulate
Nats. The use of a string literal at the type level will produce a type
of kind Symbol . Currently, there are no operations on Symbols
other than equality and comparison.

3. Promoting functions
As examples, let’s examine a few library functions extracted from
the Data.List and Data.Maybe modules:

span :: (a→ Bool)→ [a]→ ([a], [a])
span xs@[] = (xs, xs)
span p xs@(x : xs’)
| p x = let (ys, zs) = span p xs’ in (x : ys, zs)
| otherwise = ([], xs)

nubBy :: (a→ a→ Bool)→ [a]→ [a]
nubBy eq [] = []
nubBy eq (x : xs) =

x : nubBy eq (filter (λy → not (eq x y)) xs)

groupBy :: (a→ a→ Bool)→ [a]→ [[a]]
groupBy [] = []
groupBy eq (x : xs) = (x : ys) : groupBy eq zs

where (ys, zs) = span (eq x) xs

mapMaybe :: (a→ Maybe b)→ [a]→ [b]
mapMaybe [] = []
mapMaybe f (x : xs) =

let rs = mapMaybe f xs in
case f x of

Nothing → rs
Just r → r : rs

Now that the programmer has access to datakinds, she might
wish to apply the functions above at the type level. These func-
tions are all defined over terms, so she decides to simply rewrite
the functions as type families. But she quickly encounters a prob-
lem. The functions above use let statements, case expressions,
guards, higher-order functions, lambdas, partial application, where
clauses, @-patterns and wildcard patterns. None of these features
is available at the type level, so translating above definitions to type
families is a daunting task.

Nevertheless it is possible to emulate all of these Haskell con-
structs – and thus implement all of the mentioned functions – at

3 http://www.haskell.org/ghc/docs/7.8.2/html/users_guide/
type-level-literals.html

Eisenberg, Stolarek: Promoting Functions to Type Families in Haskell 2 2014/6/30

the type level by using only those features described in Section 2.
The process of doing this is tedious, so we have extended the sin-
gletons library (Eisenberg and Weirich 2012) to do the promotion
automatically. Promotion is implemented via Template Haskell and
generates type-level equivalents of definitions supplied by the user.
Promotion is performed by invoking the promote function:

$(promote [d |
map :: (a→ b)→ [a]→ [b]
map [] = []
map f (x : xs) = f x : map f xs
|])

A call to promote generates a type family implementing the pro-
moted version of map as well as some auxiliary definitions required
to make it work (details are given in Section 4.3). The functions
above are all promotable using promote, without any edits.

3.1 A longer example – reordering of type-level lists
Having complex functions easily available at the type level facili-
tates more programming in types. As a slightly longer example, we
consider the following function, reorderBy . The reorderBy func-
tion takes an equivalence predicate and two lists, which we’ll call
xs1 and xs2. The function reorders xs1 to match the ordering in
xs2, where possible. That is, all elements in xs1 that are equiva-
lent to elements in xs2 are brought to the front of the result list,
and placed in the same order as those elements in xs2. Elements
in xs1 not equivalent to anything in xs2 are left in the same order
and moved to the end of the result list. Extra elements in xs2 are
ignored.

Here is an implementation of reorderBy :

reorderBy :: ∀ a. (a→ a→ Bool)→ [a]→ [a]→ [a]
reorderBy x [] = x
reorderBy eq x (h : t)

= case extract h x of
(lst,Nothing)→ reorderBy eq lst t
(lst, Just elt) → elt : (reorderBy eq lst t)

where
extract :: a→ [a]→ ([a],Maybe a)
extract [] = ([],Nothing)
extract s (h : t)
| s ‘eq‘ h = (t, Just s)
| otherwise = let (resList, resVal) = extract s t

in (h : resList, resVal)

This function, when promoted, serves a critical role in the units
library (more fully described by Muranushi and Eisenberg (2014)).
That library allows users to type-check their code with respect to
units-of-measure, rather like the system developed by Kennedy
(1996). A crucial capability of such a library is to type-check the
multiplication of two dimensioned quantities. For example, if v is a
velocity (i.e., a Length over a Time) and we multiply by t, a Time,
we wish to get a Length. Internally, units stores the dimensions of
a quantity as a type-level list where order is insignificant. When
type-checking multiplication, we must combine two such lists,
reordering one to match the other in order to avoid duplicating a
dimension factor. Reordering is also used to ensure that addition
happens between two quantities of the same dimension, once again,
neglecting the order of the type-level lists. The type signatures for
these operations involve several other concepts related to the units
library, and a full explanation would take us too far afield.

As demonstrated here, a user can write normal term-level code
and have it promoted automatically to the type level. This makes
type-level programming much easier because the programmer can
write his code using familiar and powerful term-level constructs

and our library handles them under the hood. With our library, type-
level programming also becomes more reliable: assuming the cor-
rectness of our implementation, it is possible to test correctness of
term level functions using QuickCheck or HUnit and be confident
that the promoted functions generated from tested definitions be-
have correctly. Testing hand-written type-level code is not as sim-
ple.

3.2 Promoted Prelude
Our library provides modules containing promoted functions from
the standard Prelude as well as five other modules from the base
package: Data.Bool, Data.Either, Data.List, Data.Maybe
and Data.Tuple. These serve both as a convenience for users as
well as a test of the robustness of our approach. The five Data
modules mentioned above export a total of 125 functions. Out
of these, we were able to promote 91 simply by wrapping the
implementation from the base library in a Template Haskell quote
and calling our promote function. Out of the 34 unpromotable
functions:

• 18 functions are not promotable because they manipulate Int
or Integral type-class values, or because they rely on functions
that do so and thus have Int in their type signature. However, it
is possible to promote all of these functions if they are rewritten
to use Nat, the kind of type-level numeric literals. For example:

$(promoteOnly [d |
length :: [a]→ Nat
length [] = 0
length (: xs) = 1 + length xs
|])

promotes correctly.
• 6 are not promotable because they use list comprehensions.

They become promotable if we rewrite them to explicitly use
map and filter functions.

• 4 functions are not promotable because they operate on strings.
• 5 functions are not promotable because they work with infinite

lists and thus generate infinite types, which are not allowed in
Haskell.

• 4 functions are not promotable because the promoted function
name clashes with existing datatype. See Section 4.1.

Section 5 gives more detail about why the other functions were
not promotable. The numbers above don’t sum to 34 because some
functions fall into several categories. For example, findIndices
function uses list comprehensions, infinite lists, and integers. Some
of the mentioned limitations have workarounds. After applying
them we are left with only 7 functions that can’t be promoted: 3
that return infinite lists and 4 that work on strings.

4. Promotion algorithm
Up until now, we have seen calls to our promote function. This
section gives the gory details of how it works, under the hood.

4.1 Naming conventions
Promotion is performed by generating new Haskell definitions from
definitions supplied by the user. Thus, we adopt some naming
conventions so that programmers can later access the generated
type-level definitions. Figure 1 shows typical examples and the
full set of special cases. Occasionally, these conventions cause a
conflict, such as for the either function and the Either datatype.
In these cases, our version of the Prelude appends an underscore
to avoid the conflict. Thus, our promoted either function is named
Either .

Eisenberg, Stolarek: Promoting Functions to Type Families in Haskell 3 2014/6/30

Term-level Promoted Symbols
map Map MapSym0 , MapSym1 , MapSym2
++ :++ :++$, :++$$, :++$$$

Just ’Just JustSym0 , JustSym1
: ’: :$, :$$, :$$$

Special cases:
[] ’[] NilSym0
$ $ $$, $$$, $$$$

(,) ’(,) Tuple2Sym0 , Tuple2Sym1 , . . .
(#,#) ’(,) Tuple2Sym0 , Tuple2Sym1 , . . .

undefined Any Any

Figure 1. Examples demonstrating how names are transformed.
See Section 4.3 for more information about symbols.

4.2 Preprocessing
The promoted definitions are generated using Template Has-
kell (Sheard and Peyton Jones 2002). Users quote the code they
wish to promote in a declaration quote [d | ... |], which converts
source Haskell syntax into the Template Haskell abstract syntax
tree (AST).

Template Haskell’s AST is quite large, as it intends to represent
all of the constructs available in Haskell. However, many of these
constructs are redundant. For example, Template Haskell maintains
the distinction between (list1 ++ list2) and ((++) list1 list2),
even though these expressions have the same meaning. Thus, to
make our task easier we wrote the th-desugar library.4 This library
converts the Template Haskell AST into a smaller core language.
For example, if expressions are converted to case expressions
with True and False branches, and where clauses are converted
to let declarations. This preprocessing step is not mandatory to
implement our approach – and in fact initially we did not perform it
– but it allows us to focus on promoting a small core set of features
instead of dealing with promoting constructs that are just syntactic
sugar.

The th-desugar AST is presented in Figure 2 and more fully
described in Section 6.1. All Haskell constructs are representable
retaining their original meaning in this more condensed AST.

4.3 Functions and partial application at the type level
Functions at the type level and functions at the term level have dif-
ferent syntactic properties in Haskell. At the term level, functions
are curried so it is natural to use partially applied functions. By
contrast, calls to type-level functions in Haskell must be fully satu-
rated (Chakravarty et al. 2005a), as allowing partially applied type
functions wreaks havoc with type inference (see Section 7.1).

So, how to possibly promote a partially applied term-level func-
tion? We use the technique of defunctionalization, as first put for-
ward by Reynolds (1972). The fundamental idea of defunctional-
ization is that functions are represented by opaque symbols, which
are then applied to their arguments via a special application opera-
tor @@. Nested uses of @@ can apply a symbol to multiple arguments.
We define @@ to be an ordinary open type family, so that we can add
equations for new symbols at any time.

During promotion, we generate symbols for type families
and data constructors. The name of a defunctionalization sym-
bol in our implementation is created by appending Sym0 (for
alphanumeric identifiers) or $ (for operators) to the name of the
type-level function. Thus, the expression isJust Nothing pro-
motes to IsJustSym0 @@NothingSym0 and map pred [] pro-
motes to MapSym0 @@PredSym0 @@NilSym0 . As usual, @@ is

4 cabal install th-desugar

left-associative. In these examples, we see that all top-level iden-
tifiers are promoted to symbols. This is because Template Has-
kell offers no access to the types of terms, and thus our imple-
mentation cannot tell a partially applied function from a fully ap-
plied constant. We take the only way out and define, for example,
type NothingSym0 = ’Nothing during promotion. It is then safe
and correct to append every promoted identifier with Sym0 or $.

4.3.1 The kind�
Because symbols are not functions, the kind of a symbol must not
be built with →. Instead, we introduce the new kind � (associ-
ating to the right, like →) to classify symbols. Thus, the kind of
MapSym0 is (a� b)� ’[a]� ’[b].

Unlike closed promoted datatypes, though, we must be free to
create new members of � at any point in the program – it is a
fundamentally open kind. Thus, we hook into Haskell’s facility to
introduce new, opaque, type-level constants through its datatype
declaration mechanism. We wish to be able to say

data MapSym0 :: (a� b)� ’[a]� ’[b]

using an explicit kind annotation on the datatype declaration. Here,
we must be careful, though: all types that contain values must be
of kind ? in GHC.5 Thus, GHC requires that the kind of a datatype
end in ...→ ?, as datatypes are normally meant to hold values. We
can now figure out how� must be defined:

data TyFun :: ?→ ?→ ? -- only the promoted form is used
kind a� b = ’TyFun a b → ?

where the second line uses a hypothetical syntax to introduce a kind
synonym. Expanding this definition for�, we see that the kind of
MapSym0 indeed ends with ...→ ? as required.

In our actual implementation, we have no kind synonyms, and
we are left with using the more verbose TyFun routinely.

4.3.2 The @@ type family and its instances
The application operator @@ is defined as an open type family; new
instances (i.e., equations) of this family can be written at any time.
Its definition is quite naturally

type family (f :: k1 � k2) @@ (x :: k1) :: k2

Rewriting somewhat, the kind of @@ is (k1 � k2) → (k1 → k2)
– it converts a symbol into a real function.

To write the instances for our defunctionalized symbols, we
must create a new symbol for every level of partial application. For
example, Map might be totally unapplied, be given one argument,
or be given two arguments. Thus, we get three symbols, MapSym0 ,
MapSym1 , and MapSym2 , with kinds as follows:

MapSym0 :: (a� b)� ’[a]� ’[b]
MapSym1 :: (a� b)→ ’[a]� ’[b]
MapSym2 :: (a� b)→ ’[a]→ ’[b]

Note how the choice of arrow changes between symbols. MapSym0
must appear with @@ to use it at all, whereas MapSym1 takes its
first argument without @@. Indeed, the number assigned to a symbol
denotes its honest-to-goodness arity as a GHC type.

With these definitions in hand, the instances for @@ are straight-
forward:

type instance MapSym0 @@ f = MapSym1 f
type instance (MapSym1 f) @@ xs = MapSym2 f xs
type MapSym2 f xs = Map f xs
type family Map (f :: a� b) (xs :: ’[a]) :: ’[b] where ...

5 We ignore here, and throughout, the existence of the kind # that classifies
unlifted types.

Eisenberg, Stolarek: Promoting Functions to Type Families in Haskell 4 2014/6/30

The definition for MapSym2 is not strictly necessary in our
scheme; it is included to parallel the non-function case (such as
NothingSym0 , above).

4.3.3 Kind inference
It is essential that the kinds of the symbols be correct for the pro-
moted code to kind-check. But, given that Template Haskell is not
type-aware, how are these kinds determined? At first glance, the
problem seems easy: just look at top-level type signatures. After all,
it would seem to be a reasonable burden to ask programmers keen
on type-level programming to write top-level annotations for their
definitions. However, these top-level annotations turn out to be in-
sufficient. As we will shortly see, we use the technique of lambda
lifting (Johnsson 1985) to deal with anonymous functions within
expressions. Lambda-expressions tend not to have any type anno-
tations, and it would be annoying to users to require annotations
here, both on arguments and on the return value. So, we must strive
for something better.

To get the kinds right for the symbols, we wish to propagate the
kinds up from the type family representing the function at hand.
Let’s continue to consider the Map example. The type family Map
is given explicit kind annotations (produced from map’s top-level
type signature), but its kinds could also have been inferred by GHC.
Then, the type MapSym2 , a simple type synonym for Map, also
gets the correct kinds, via simple kind inference on the definition
for MapSym2 . Thus, we have MapSym2 :: (a � b) → ’[a] →
’[b]. To see how MapSym1 and MapSym0 get their kinds, let’s
look at their full definitions:

type KindOf (a :: k) = (’KProxy :: KProxy k)
-- defined once for all symbols

data MapSym1 x f where
MapSym1KindInference

:: KindOf ((MapSym1 x) @@ arg)
∼ KindOf (MapSym2 x arg)

⇒ MapSym1 x f
data MapSym0 f where

MapSym0KindInference
:: KindOf (MapSym0 @@ arg)
∼ KindOf (MapSym1 arg)

⇒ MapSym0 f

Much like in the old days before explicit kind annotations, we use
dummy data constructors to constrain the kinds of the symbols.
The KindOf type synonym discards the types, leaving only the
kinds. This turns out to be crucial, because the discarded types are
ambiguous; without KindOf , GHC reports ambiguity errors for
these data constructors. In the definition for MapSym1 , we see
that the type variable x is used as an argument to MapSym2 .
This fixes the kind of x to be (a � b). We then see that
KindOf ((MapSym1 x) @@ arg) ∼ KindOf (MapSym2 x arg)
So, (MapSym1 x) @@ arg and MapSym2 x arg must have the
same kinds, specifically ’[b]. Given that @@ has the correct kind,
this means that (MapSym1 a) must have the correct kind (that is,
’[a] � ’[b]), and thus that the type variable f has the right kind
(that is, TyFun ’[a] ’[b], unrolling the definition for �). Putting
this all together, we see that MapSym1 ::(a� b)→ ’[a]� ’[b],
as desired. A similar line of reasoning gives us MapSym0 :: (a �
b)� ’[a]� ’[b].

4.3.4 η-expansion
There is one corner case we must handle during function promo-
tion. Haskellers often η-reduce their definitions where possible –
that is, the type of a function may have more arrows in it than pat-
terns in the function’s clauses. A convenient example is zip:

zip :: [a]→ [b]→ [(a, b)]
zip = zipWith (,)

A naive promotion of zip would give us Zip :: ’[a] � ’[b] �
’[’(a, b)]. This promotion would not correspond to users’ intu-
itions – the kind has the wrong arrows! We would want to be able
to say Zip ’[Int,Bool] ’[Char ,Double] and get ’[’(Int,Char),
’(Bool ,Double)]. Instead, users would have to use @@ to use Zip.

The solution to this is straightforward: η-expansion. When pro-
moting zip, we actually promote the following version:

zip :: [a]→ [b]→ [(a, b)]
zip eta1 eta2 = zipWith (,) eta1 eta2

This η-expansion is done only when there is a type signature to
signal the need for expansion.

4.4 Datatypes
At the term level, data constructors can be used in any context ex-
pecting a function. We want to have the same uniformity at the
type level. We rely on GHC’s built-in promotion mechanism to pro-
mote datatypes, and it does most of the work for us.6 However, we
must generate the defunctionalization symbols manually. For ev-
ery data constructor, we generate symbols and @@ instances in the
same way we generate them for promoted functions. This symbol
generation may seem somewhat redundant for promoted data con-
structors, because they are allowed to appear partially applied in
programs. Nonetheless, given that→ and� are distinct kinds, we
must defunctionalize the data constructors to achieve uniformity
with promoted functions.

By using GHC’s mechanism for datatype promotion, we run
into one technical snag. During promotion, all arrows → become
defunctionalized arrows�. Since GHC does not apply this trans-
formation during its promotion of datatypes, promoted datatypes
that store functions will not work correctly. For example, while
promotion of the following Arr datatype will succeed, promotion
of the arrApply function will fail due to a kind mismatch:

data Arr a b = Arr (a→ b)

arrApply :: Arr a b → a→ b
arrApply (Arr f) a = f a

We could solve this problem by implementing our own datatype
promotion mechanism using Template Haskell. That design would
be awkward for the programmer, though, as there would be two
promoted versions of each datatype: one generated by GHC and
another one by us, with slightly different names.

4.5 case expressions
A case expression inspects a scrutinee and selects an appropriate
alternative through pattern matching. The only way we can perform
pattern matching at the type level is via a type family. Thus, we turn
case expressions into fresh closed type families. Each alternative
in the original case becomes a defining equation of the type family.
We must, however, remember that case alternatives may use local
variables bound outside of the case expression. Since type families
are top-level constructs, an equation’s RHS can use only bindings
introduced by the patterns in its LHS. Therefore, when promoting
a case expression to a type family, we pass all in-scope bindings
as parameters to the type family – much like in lambda lifting. The
scrutinee itself is the last parameter.

Here is an example from the Data.Maybe module:

6 We make no attempt to detect datatype definitions that can’t be promoted
by GHC, for example GADTs. We naturally cannot promote these datatypes
either.

Eisenberg, Stolarek: Promoting Functions to Type Families in Haskell 5 2014/6/30

fromMaybe :: a→ Maybe a→ a
fromMaybe d x = case x of

Nothing → d
Just v → v

This function promotes to the following:7

type family Case d x scrut where
Case d x ’Nothing = d
Case d x (’Just v) = v

type family FromMaybe (t1 :: a) (t2 :: ’Maybe a) :: a
where

FromMaybe d x = Case d x x

The case expression is promoted to the type family Case and its
application on the RHS of FromMaybe. Local variables d and x ,
both in scope at the site of the case statement, are passed in, along
with the scrutinee, also x . In the definition of Case, the scrutinee
– that is, the third parameter – is matched against, according to the
original, unpromoted definition.

It is conceivable to do a dependency check to eliminate the
redundant second parameter to Case. We have not implemented
this as we suspect that benefits of such an optimization would be
small, if any.

We also note that, because this type family Case is used only
once and is fully applied, there is no need to create the defunction-
alization symbols for it.

4.6 Lambda expressions
Promoting an anonymous function poses two difficulties. Firstly,
lambdas, like all functions, are first-class values that can be passed
around and partially applied. Secondly, the body of a lambda can
use variables bound in the surrounding scope – the lambda can
define a closure. For example, in the dropWhileEnd function from
the Data.List module, p is used inside a lambda body but is
bound outside of it:

dropWhileEnd :: (a→ Bool)→ [a]→ [a]
dropWhileEnd p = foldr (λx xs → if p x && null xs

then []
else x : xs) []

Happily, we have already solved both problems, making promo-
tion of lambdas straightforward. A lambda expression promotes to
the use of a fresh type family, along with the family’s definition.
Just like with case, all in-scope local variables are turned into ex-
plicit parameters. The technique we use here is, of course, lambda
lifting (Johnsson 1985).

The major difference between lambdas and case expressions is
that, for lambdas, we must generate symbols so that the lambda
can be partially applied and passed around as a first-class value.
The freshness of the type family name prevents a programmer from
explicitly calling type families that encode promoted lambdas. The
result of promoting dropWhileEnd looks like this, omitting the
tiresome symbol definitions:

type family Case p eta1 x xs scrut where
Case p eta1 x xs ’True = NilSym0
Case p eta1 x xs ’False = (:$) @@ x @@ xs

type family Lambda p eta1 x xs where
Lambda p eta1 x xs = Case p eta1 x xs

((:&&$) @@ (p @@ x) @@ (NullSym0 @@ xs))

type family DropWhileEnd (p :: a� Bool)
(eta1 :: [a]) :: [a] where

7 Here and elsewhere, we omit various decorations put on generated names
to guarantee freshness.

DropWhileEnd p eta1 =
(FoldrSym0 @@ (LambdaSym0 @@ p @@ eta1)

@@NilSym0) @@ eta1

4.7 let statements
A let statement introduces a set of (potentially recursive) local
bindings. Since there is no local binding construct available at the
type level, we must once again lift let bindings to the top level. As
we have done elsewhere, each let-bound name is freshened to guar-
antee uniqueness. Let-lifting differs in an important respect from
case- and lambda-lifting: let-bound identifiers have an unfolding,
unlike case- and lambda-bound identifiers. Thus, we do not pro-
mote a let-bound identifier into a type variable, but instead into a
call of the top-level definition generated by the identifier’s declara-
tion.

Consider this function:

doubleSucc :: Nat1 → Nat1
doubleSucc x = let y = Succ x

z = Succ y
in z

In this example, x is bound in the scope surrounding the let-
statement, y appears both as a variable binding and on the right-
hand side of another binding, namely z , while z itself appears as a
variable binding and inside the body of the let. The y and z bind-
ings will be lifted to become top-level identifiers (type synonyms
in this example) that accept x as parameter. Since the names of y
and z will be fresh, we must build a substitution from the original
let-bound identifier to a promoted, freshened identifier applied to
all local variables in scope. Thus, the promoted code will look like
this:

type LetY x = SuccSym0 @@ x
type LetZ x = SuccSym0 @@(LetYSym1 x)
type family DoubleSucc (a :: Nat) :: Nat where

DoubleSucc x = LetZSym1 x

Notice how x , which was bound in the scope surrounding the
let-statement, became an explicit parameter of every lifted let-
declaration. It is also passed in at every use site of these lifted let-
bound identifiers.

Recursive let-bindings do not pose any particular problem here,
as type families may be recursive. A recursive definition that leads
to an infinite data structure, however, is problematic – GHC does
not permit infinite types. See Section 5 for more discussion.

4.8 Type classes and instances
Type classes enable several different programming capabilities. We
review how these manifest at the type level before presenting our
promotion strategy.

4.8.1 Ad hoc polymorphism
A Haskell type class enables ad hoc polymorphism, where one
function can have different implementations at different types. The
notion of an explicit type class is made necessary by the lack of a
type-case. For example, consider the following bogus definition:

sometimesNot :: ∀ a. a→ a
sometimesNot x = typecase a of Bool → not x

→ x

Here, we check the instantiation for a at runtime and make a de-
cision on how to proceed based on the type a. This is, of course,
not possible in Haskell – it would break both type erasure and para-
metricity. When a user wants functionality like sometimesNot, she

Eisenberg, Stolarek: Promoting Functions to Type Families in Haskell 6 2014/6/30

uses a type class. The use of this type class then appears in the type
of sometimesNot:

sometimesNot :: SupportsSometimesNot a⇒ a→ a

By including the type constraint there, the type advertises that it is
not strictly parametric in a.

Promoting this concept is made easy by one simple fact:
type families are not parametric in their kinds! In other words,
a type family can pattern-match on the kinds of its arguments,
not just the types. The following promotion of the original, bogus
sometimesNot is perfectly valid:

type family SometimesNot (x :: a) :: a where
SometimesNot (x :: Bool) = Not x
SometimesNot x = x

In this type family, we match on the kind of the parameter to choose
which equation to use, making this a kind-indexed type family.
We should note that such action does not cause trouble with type
erasure, as both types and kinds are compile-time constructs.

4.8.2 Open functions
A normal Haskell function is closed. All of its defining equations
must be listed in one place. A type class method, on the other
hand, is open, allowing its defining equations to be spread across
modules. Promoting an open function is thus easy: use an open type
family.

4.8.3 Method defaulting
Type classes also permit the possibility of method defaults. This is
evident in the definition of Eq:

class Eq a where
(==), (/=) :: a→ a→ Bool

x == y = not (x /= y)
x /= y = not (x == y)

If an instance does not supply a definition for one of these methods,
the default is used. Happily, GHC provides a similar capability
through associated type families. GHC accepts an associated type
family default, much like a method default. The default is used only
when an instance does not supply another definition.

4.8.4 Promotion
The first two capabilities above – ad hoc polymorphism and open
functions – seem to suggest that we promote a class declaration by
rewriting all of its methods as open type families and not to bother
promoting the class itself. However, method defaulting, which is
much used in practice, tells us that we somehow need to package
these type families in a new class definition in order to make the
open type families associated, and hence defaultable.

To promote a type class, then, we need a kind class! Though the
syntax is somewhat burdensome, GHC supports kind classes via a
poly-kinded type class definition where the type itself is irrelevant.
Putting this all together, here is the promotion of Eq:8

data KProxy (a :: ?) = KProxy -- in Data.Proxy

class (kproxy ∼ ’KProxy)
⇒ PEq (kproxy :: ’KProxy a) where

type (x :: a) :== (y :: a) :: Bool
type (x :: a) :/= (y :: a) :: Bool

type x :== y = Not (x :/= y)
type x :/= y = Not (x :== y)

8 The definition exactly as stated does not work in GHC 7.8.2, due to a bug
in kind-checking associated types. It is reported as GHC bug #9063 and can
be worked around via kind annotations on the default definitions.

We make use here of the type KProxy , which when promoted,
is a type-level proxy for a kind argument. Its definition restricts its
type parameter a to be of kind ? so that the type is promotable;
GHC does not promote poly-kinded datatypes. However, the type
is intended to be used only when promoted.

The class declaration head now takes a type-level proxy for the
kind-level argument a. In other words, PEq is properly a kind class,
as desired. (The kproxy ∼ ’KProxy constraint forces the term-
level argument kproxy to be irrelevant. It is necessary for recursive
definitions to type check.)

Instance promotion Given all the work above, promoting in-
stances is quite straightforward: we promote the instance head to
use a KProxy parameter and promote method bodies just like nor-
mal functions. GHC’s built-in defaulting mechanism does the de-
faulting for us.

Constraint promotion How do we promote a constrained func-
tion? We simply drop the constraints. Making a type family asso-
ciated with a class attaches the type family parameters to the class
parameters (enabling more kind checking) and allows for default-
ing. But, using an associated type family does not induce the need
for a class constraint. This is crucial, because there is no way of
writing a constrained type family instance. Thus, we safely ignore
any class constraints during promotion.

If we just drop constraints, couldn’t a user call an associated
type family at the wrong kind? (For example, consider (:==) at
Bool → Bool .) Yes, this can happen, but nothing bad comes from
it – the type family just does not reduce. Types being stuck cause
no problems; they are just empty types. This, of course, is quite
different from terms being stuck, which generally leads to a crash
of some sort.

Deriving Eq, Ord and Bounded If a datatype derives the Eq,
Ord or Bounded classes, we automatically derive the promoted
instance. Other derivable classes are currently ignored.

4.9 Other language features
Below we list other language features present in Chapters 3 and 4
of the Haskell 2010 Language Report that were omitted in earlier
discussion.

Records: Promotion of records is fully supported. For datatypes
declared using record syntax, th-desugar generates appropri-
ate accessor functions. Record update, construction and pattern-
matching syntax are desugared into simpler constructs that rely
on simple pattern matching, case expressions and datatype con-
struction. There is one restriction on record promotion: a record
datatype definition must be promoted in a separate Template
Haskell splice from its use sites. This is a limitation in the th-
desugar library, which can look up record field names only in a
splice that has already been type-checked.

Type signatures on expressions: We promote type-annotated ex-
pressions to kind-annotated types.

Errors: The Haskell 2010 Language Report defines error and
undefined functions that cause immediate program termina-
tion when evaluated. Both these functions represent ⊥ and in-
habit every type. We don’t have type-level expressions that
cause type-checking termination when evaluated, but we can
have types that belong to any kind. Furthermore, it seems rea-
sonable to equate ⊥ with a “stuck” type – a type-level expres-
sion containing a type family but unable to progress. Thus error
promotes to the Error open type family:

type family Error (a :: Symbol) :: k

Eisenberg, Stolarek: Promoting Functions to Type Families in Haskell 7 2014/6/30

This family has no instances, so it is always stuck. Along
similar lines, undefined promotes to Any , a special type in
GHC belonging to any kind.

Other syntactic sugar: This catch-all entry includes if condition-
als, operator sections, and pattern guards. These are eliminated
by the th-desugar preprocessing pass, in favour of case state-
ments (for conditionals and guards) or lambda-expressions (for
sections).

5. Limitations
Earlier work on this subject (Eisenberg and Weirich 2012) listed
language features that were either not yet supported by the single-
tons library or problematic to implement. We can now state that
almost all such features are now implemented and fully supported.
Exceptions include the following:

Infinite terms: While it is possible to construct infinite terms
thanks to laziness, it is not possible to construct infinite types.
Therefore, it will not be possible to use any promoted expres-
sion that generates such a type. A good example of this is the
iterate function found in the standard Prelude:

iterate :: (a→ a)→ a→ [a]
iterate f x = x : iterate f (f x)

The promotion itself does not fail, but any attempt to use pro-
moted Iterate does. This example also demonstrates another
shortcoming of the current implementation. Our algorithm op-
erates in an untyped setting and only reports errors when the
algorithm gets stuck. This means we can generate definitions
that are unusable. At the moment, the responsibility of identi-
fying such a problem rests on the programmer.

Literals: We rely on GHC’s built-in promotion of literals, so our
approach is limited by GHC’s capabilities. At the moment,
promotion of integer literals to type-level Nats is supported,
but this approach has drawbacks: negative integer literals do
not promote, and the types do not work out – the type Int does
not promote to the kind Nat.
String literals also present a problem, mainly because after
GHC promotes them to the type level they are no longer con-
sidered lists of characters. This means, for example, that it is
impossible to promote code that concatenates two string liter-
als using (++). It seems to us that it is impossible to bridge this
gap with the current implementation of type-level strings within
GHC.

Datatypes storing functions: We do not support the promotion of
datatypes that store functions. See Section 4.4 for details.

do-notation: th-desugar preprocessing desugars do-notation along
the lines of the desugaring described in the Haskell Report. This
creates lambda-expressions composed using monadic bind op-
erators. While lambdas and operators are by themselves pro-
motable, the types of monadic operations pose a problem. They
involve a higher-kinded type variable (the m in Monad m).
Haskell’s support for kind variables does not have a system of
classifying kind variables. That is, there is no such thing as a
“higher-sorted” kind variable. If we were to try to promote the
type of (>>=), we would have to get ma → (a � mb)→ mb.
Here, we’ve removed the need for higher sorts by writing what
should be m a as the single variable ma. But, we have no way
of expressing relation between ma and a in the type signature
of a hypothetical (:>>=) type family. It is possible to put explicit
type annotations on hand-written monadic expressions to guide
GHC’s kind inference and have them promote correctly. But

doing so for desugared do-notation would require us to write
our own type inference. Thus, do-notation is not promotable.

List comprehensions: These are syntactic sugar for monadic no-
tation and thus do not promote for exactly the same reasons as
do-notation.

Arithmetic sequences: These rely on the Enum type class, which
is implemented using integers and infinite lists. Integers can
be worked around with Nats. Infinite lists however are a more
fundamental problem, as we discussed above.

Show and Read type classes: These rely critically on string ma-
nipulation, which is not available on type-level Symbols.

Fixity declarations for datatypes: Due to a Template Haskell
bug, fixity declarations for capitalized identifiers (including
symbols beginning with “:”) currently do not work.9

6. Formalization and proof
The process we describe in Section 4 is rather involved. In this
section, we present a formal grammar for a subset of Haskell and a
promotion algorithm over this grammar. We then prove that

• promoting a well-typed, promotable term yields a well-kinded
type, and

• assuming lambda-lifting is correct, the semantics of a promoted
term lines up with that of the original term.

Both the formal promotion algorithm and the proof are done in
two stages. First, we promote (written as a postfix ⇑) expressions
into extended types, written τ̂ , which contains the grammar of
types τ but also includes anonymous functions, and case and let
expressions. We then reduce this extended type language into the
language of ordinary types through the operation b·cθβ , discussed
more in Section 6.3.

6.1 The formal grammar
The grammar we work with is presented in Figure 2.10 Much of the
first part of this figure – a rendering of the actual AST used in our
implementation – is rather standard for Haskell. There are a few
points of interest:

Literals: Literals are included as 〈lit〉 in the definition of expres-
sions e , as literals form part of the AST used in our implementa-
tion. However, as promotion of literals does disrupt their typing
and semantics, we omit them from the rest of this section.

let declarations: let-declarations δ include a bound variable x ,
an optional signature σ, and a list of function clauses π 7→ e .
Note that each clause is a list of patterns π mapping to a single
expression e .

Type family applications: The grammar for types τ includes type
family application F (τ). This is written with parentheses to
emphasize the fact that type families must always appear fully
saturated. As implemented in GHC, this is properly part of the
syntax, not part of the type system – any use of a bare type
family F is malformed.

Kind schemes: Although kind schemes ψ cannot be written in
Haskell, a Haskell programmer using kind-polymorphism must
consider these, which classify type constructors and promoted
data constructors.

Figure 2 includes also the definition for the contexts used in the
typing judgements and proofs.

9 See https://ghc.haskell.org/trac/ghc/ticket/9066
10 Our formalism was developed and typeset using Ott (Sewell et al. 2010)

Eisenberg, Stolarek: Promoting Functions to Type Families in Haskell 8 2014/6/30

Metavariables:
Term vars x , y Data constructors K
Type vars α, β Type constructors T
Kind vars X ,Y Type families F

Core th-desugar grammar:
e ::= x |K | e1 e2 |λx 7→ e | 〈lit〉 Expressions
| case e0 of π 7→ e | let δ in e | e :: τ

π ::= x |K π | Patterns
δ ::= (x :: σ){π 7→ e} | x{π 7→ e} let declarations
τ ::=α |(→) | τ1 τ2 | ’K |T | τ :: κ |F (τ) Types
σ ::=∀α.σ | τ Type schemes
κ ::=X | ’T κ |κ1 → κ2 | ? Kinds
ψ ::=∀X .ψ |κ Kind schemes

Top-level declarations:
dec ::= typeF tvb = τ

| type familyF tvbwhere τ 7→ τ ′

tvb ::=α |α :: κ

Declarations

Type var. binders

Grammar for extended types:
τ̂ ::=α |(→) | τ̂1 τ̂2 | ’K |T | τ̂ :: κ |F (τ̂) Extended types
| λα 7→ τ̂ | case τ̂0 of τ 7→ τ̂ ′ | let ω in τ̂

ω ::= (α :: ψ){τ 7→ τ̂ ′} |α{τ 7→ τ̂ ′} Type-let decls.

Γ ::=∅ |Γ, x :τ |Γ, x :σ |Γ, α:κ |Γ,X Type contexts
Γ̂ ::=∅ | Γ̂, α:κ | Γ̂, α:ψ | Γ̂,X Ext. type contexts
θ ::=∅ | θ, x 7→ e | θ, α 7→ τ Substitutions
Σ ::= δ Environments

Other notation conventions:
Symn(K) and Symn(F) mean the nth symbol derived from K

and F , respectively; these are both type constructors T .
Lambda, Case, and Let(α) are fresh names for type families F .
(@@) is a type family F ; (�) is a type constructor T .
(→) and (�) associate to the right; (@@) to the left.
tvs(Γ) and kvs(Γ) extract bound type and kind variables, resp.
ftv(τ) and fkv(κ) extract free type and kind variables, resp.

Figure 2. The grammar for the th-desugar subset of Haskell,
along with other definitions used in our proof.

Our notation for lists is optimized for brevity, sometimes at the
risk of introducing ambiguity. We frequently simply use an overbar
to represent a list. When the length of the list is relevant, we write it
as a superscript, thus: τn . As we never have nested lists, we conflate
appending with concatenation: τ , τ ′ adds one element to the list τ ,
while τ , τ ′ concatenates two lists.

6.2 Promotion algorithm
Figure 3 contains the formal promotion algorithm. This algorithm
is appropriately partial. For example, the cases for promoting a
type are quite limited; we cannot promote type families or already-
promoted data constructors. When no equation in the algorithm
statement is applicable for a given τ , then τ⇑ does not exist. If
τ⇑ does not exist, then neither does any form containing τ⇑.

Variables are promoted to fresh variables. For example, the
variable x⇑ is a type variable (like α), but is distinct from other
αs. In other aspects, x⇑ is an ordinary type variable, making a type
scheme like ∀ x⇑.τ well-formed.

This algorithm performs defunctionalization. This can be seen
in the definitions for K⇑, (e1 e2)⇑, and (τ1 → τ2)⇑ – all promoted
functions are defunctionalized and must be applied using @@. No
expression form promotes to a standard type-level application.

Patterns promote to standard, non-extended types. This fits well
with the use of types as patterns when defining type families.

Context promotion (Γ⇑ := Γ̂′):
∅⇑ := ∅

(Γ, x :τ)⇑ := Γ⇑, x⇑:τ⇑
(Γ, x :σ)⇑ := Γ⇑, x⇑:σ⇑
(Γ, α:?)⇑ := Γ⇑, α⇑

Expression promotion (e⇑ := τ̂):
x⇑ := x⇑
K⇑ := Sym0(K)

(e1 e2)⇑ := e1⇑ @@ e2⇑
(λx 7→ e)⇑ := λx⇑ 7→ e⇑

(case e0 of π 7→ e)⇑ := case e0⇑of π 7→ e⇑
(let δ in e)⇑ := let δ⇑ in e⇑

(e :: τ)⇑ := e⇑ :: τ⇑

Match promotion:
(π 7→ e)⇑ := π⇑ 7→ e⇑

Pattern promotion (π⇑ := τ):
x⇑ := x⇑

(K π)⇑ := ’K π⇑ (K promotable)
⇑ := α (α fresh)

Let declaration promotion (δ⇑ := ω):
(x :: σ){π 7→ e}⇑ := (x⇑ :: σ⇑){π 7→ e⇑}

x{π 7→ e}⇑ := x⇑{π 7→ e⇑}

Clause promotion:
(π 7→ e)⇑ := π⇑ 7→ e⇑

Type promotion (τ⇑ := κ):
α⇑ := α⇑

(τ1 → τ2)⇑ := τ1⇑� τ2⇑
(T τ)⇑ := ’T τ⇑ (T : ?→ ?)

(τ :: κ)⇑ := τ⇑

Type scheme promotion (σ⇑ := ψ):
(∀α.τ)⇑ := ∀α⇑.τ⇑

τ⇑ := τ⇑

Figure 3. Promotion algorithm. The promotion operator ⇑ implic-
itly distributes over lists. The (K promotable) condition refers to
whether or not GHC can promote K ; see Section 3.3 of Yorgey
et al. (2012) for details.

Contexts are promoted to extended contexts. The only differ-
ence between an extended context and a regular one is that extended
contexts may contain bindings of the form α:ψ. In Haskell, type
variables always have a monomorphic kind; only top-level defini-
tions such as data or type constructors can be kind-polymorphic.
Thus, the α:ψ form must be excluded from regular contexts. On
the other hand, extended types need bindings of this form to sup-
port type-level let over kind-polymorphic functions.

6.3 Reduction algorithm
After promoting an expression to an extended type, we then reduce
it back into a regular type. This process entails rewriting the type to
fit into the grammar of regular types and emitting top-level type
and type family declarations as appropriate. The algorithm ap-
pears in Figure 4. Unlike promotion, reduction is a total operation
– it has no possibility of failure.

Reduction on extended types, written bτ̂cθβ , is parameterized by
a list of free type variables β and a substitution from type variables
to types θ. The local variables β are necessary when working
with fresh top-level declarations in order to pass these variables

Eisenberg, Stolarek: Promoting Functions to Type Families in Haskell 9 2014/6/30

Reduction of contexts (bΓ̂c = Γ′):
b∅c := ∅

b(Γ, α:κ)c := bΓc, α:κ
b(Γ, α:ψ)c := bΓc
b(Γ,X)c := bΓc,X

Reduction of extended types (bτ̂cθβ = τ ′):
bαcθβ := θ(α)

b(→)cθβ := (→)

bτ̂1 τ̂2cθβ := bτ̂1cθβ bτ̂2c
θ
β

b’K cθβ := ’K
bTcθβ := T

bτ̂ :: κcθβ := bτ̂cθβ :: κ

bF (τ̂)cθβ := F (bτ̂cθβ)

bλα 7→ τ̂cθβ := Symn(Lambda)β
n

⇒ type Lambdaβ α = bτ̂cθβ,α
bcase τ̂0 of τ 7→ τ̂ ′cθβ := Case(β, bτ̂0cθβ)

⇒ type familyCaseβ αwhere dτ 7→ τ̂ ′eθβ
where α is fresh

blet ω in τ̂cθβ := bτ̂cθ,θ
′

β

⇒ ∀i, dωieθ,θ
′

β

where θ′ = bωcθβ
Lifting of type-level case match to type family equation:

dτ 7→ τ̂ ′eθβ := Case(β, τ) 7→ bτ̂ ′cθβ,ftv(τ)

Reduction of type-level let decl. to subst. (bωcθβ = θ′):

b(α :: ψ){τ 7→ τ̂ ′}cθβ := α 7→ Symn(Let(α))β
n

bα{τ 7→ τ̂ ′}cθβ := α 7→ Symn(Let(α))β
n

Lifting of type-level let declaration to top-level declaration:
d(α :: ∀X .κ� κ0){τ 7→ τ̂ ′}eθβ :=

type family Let(α)β (β′i :: κi)
n
where αdτ 7→ τ̂ ′eθβ

where n = length τ and the β
′

are fresh
dα{τ 7→ τ̂ ′}eθβ :=

type family Let(α)β β
′n

where αdτ 7→ τ̂ ′eθβ
where n = length τ and the β

′
are fresh

Lifting of type-level clauses to type family equations:
αdτ 7→ τ̂ ′eθβ := Let(α)(β, τ) 7→ bτ̂ ′cθβ,ftv(τ)

Figure 4. Reduction algorithm from extended types to regular
types. Both operations (reduction and lifting) distribute over lists.

as parameters. The substitution θ maps let-bound variables to their
lambda-lifted equivalents.

For example, consider stutter and its promotion:

stutter :: [a]→ [a]
stutter (x : xs) =

let cons ys = x : ys in
cons (cons xs)

type family Stutter (xs :: ’[a]) :: ’[a] where
Stutter (x ’: xs) = LetConsSym2 x xs @@

(LetConsSym2 x xs @@ xs)
type family LetCons x xs ys where

LetCons x xs ys = (:$) @@ x @@ ys

(τ1 → τ2)[κ/α] := τ1[κ/α]→ τ2[κ/α]

(T τ)[κ/α] := ’T τ [κ/α]
αi [κ/α] := κi

Figure 5. Promotion of datatypes in GHC: τ [κ/α] (adapted from
Figure 9 of Yorgey et al. (2012))

When reducing the body of the let (cons (cons xs)), the type vari-
ables β are x and xs . This is how these variables are passed into
LetConsSym2 . The substitution θ is cons⇑ 7→ LetConsSym2 x xs .
Thus, when the reduction algorithm sees cons⇑, it knows what to
replace it with.

We can consider the top-level to be one big let expression. Ac-
cordingly, there is always a substitution θ during reduction; outside
of any local let, it is essentially the “make uppercase identifier”
function. These substitutions are built by reducing the list of type-
level let-declarations, as shown in Figure 4.

The figure also contains definitions of the lifting operations
d·eθβ , which are used in producing top-level declarations to imple-
ment the extra features present in extended types. Other than the
clutter of dealing with lots of syntax, there is nothing terribly unex-
pected here.

6.4 Type-correctness
We define typing judgements for expressions, Γ ` e : τ , and
types, Γ ` τ : κ, based on how users expect Haskell to work.
We are unaware of a simple formulation of surface Haskell’s type
system and so have written this ourselves. There is other work in
this area (Faxén 2002; Jones 1999), but the nature of the existing
formulations makes them hard to adapt for our purposes. Note that
the typing judgements presented here are different than that in work
on GHC’s core language FC (for example, Sulzmann et al. (2007)),
because we are working solely in surface Haskell. The typing rules
appear in the extended version of this paper. They have been left
out of the paper proper due to space concerns, but there is nothing
unexpected.

Promotion We prove type safety by proving the safety of pro-
motion ⇑, with respect to typing judgements for extended types
Γ̂ èxt τ̂ : κ, also in the extended version of this paper. These rules
combine the normal typing rules with new rules for the extra type-
level forms that closely resemble their term-level equivalents.

We first prove that defunctionalization symbols work as desired:

Lemma (Data constructor symbols). If K : σ and if σ⇑ exists,
then Sym0(K) : σ⇑.

The proof of this lemma depends on the relationship between
our promotion algorithm and GHC’s internal promotion algorithm.
GHC’s version, in Figure 5, is written as a substitution of kinds in
for the type variables in a type, as every free type variable must
become a kind during GHC’s promotion.

We use this fact to prove the following:

Lemma (Promotion to extended types is well-typed). Let Γ⇑, e⇑,
and τ⇑ exist. If Γ ` e : τ , then Γ⇑ èxt e⇑ : τ⇑.

Reduction Having shown that promotion to extended types
works, we must now prove that reduction also is well typed. How-
ever, reduction depends more critically on the contexts where it
is performed. Thus, we introduce the idea of top-level contexts,
which simplifies the statements of the lemmas:

Definition (Top-level contexts and substitutions). Let δ be a set of
declarations such that ∅ ` δ Γ0 and θ0 = bδ⇑c∅∅. Then, Γ0 is
a top-level context, and θ0 is the associated top-level substitution.

Eisenberg, Stolarek: Promoting Functions to Type Families in Haskell 10 2014/6/30

This definition uses the judgement ∅ ` δ Γ0, which says
that the declarations δ are well-typed in an empty context and
induce a typing context Γ0 when the declarations are in scope.
The intent is that δ are top-level declarations. The θ0 mentioned
works out in practice to be the “make uppercase identifier” function
described above.

Lemma (Type reduction preserves kinds). Let Γ0 be a top-level
context and θ0 its associated substitution. If Γ0⇑ èxt τ̂ : κ, then
bΓ0⇑c ` bτ̂cθ0∅ : κ and the emitted type declarations are valid.

Full type-correctness Putting these together yields the following:

Theorem (Promotion is well-typed). Let Γ0 and θ0 be a top-level
context and its associated substitution. If Γ0 ` e : τ , where e⇑ and
τ⇑ exist, then ∅ ` be⇑cθ0∅ : τ⇑.

6.5 Semantics
We have shown that promoting a well-typed expression yields a
well-kinded type. We must also show that this well-kinded type
behaves the same as the original expression. To do so, we define a
small-step operational semantics both for expressions and for types.
We are unfamiliar with previous work on developing an operational
semantics for Haskell. The expression semantics relation, Σ; e −→
Σ′; e ′, is based on an understanding of how Haskell expressions
reduce.11 The step relation tracks an environment Σ, which is
just a set of let-bound variables for use in lookup. The type-level
semantics, τ −→ τ ′, is a congruence over type family reduction,
as type family reduction is the only way that a type “steps.”

Conjecture (Promotion preserves semantics for closed terms). Let
Γ0 be a top-level context and θ0 its associated substitution, where
Σ0 = δ0 are the top-level declarations. If Γ0 ` e : τ , Σ0; e −→∗
Σ′; e ′, both e⇑ and τ⇑ exist, and e ′ consists only of data construc-
tors and applications, then e ′⇑ exists and be⇑cθ0∅ −→

∗ be ′⇑c∅∅.

The intuition behind the above conjecture is that an expression
well-typed in a top-level context that eventually reduces to an
observable value (that is, applied data constructors) promotes to a
type that reduces to the promoted form of the value.

Alas, we are unable to prove this conjecture in full because of
reduction’s dependence on lambda lifting. Proving lambda lifting
correct is a large enterprise of itself, and is beyond the scope
of this paper. We refer the reader to the work of Fischbach and
Hannan (2003), which states a lambda lifting algorithm and proves
it correct, at length.

Instead of proving the conjecture above, we settle for proving
that an extension of the type-level semantics, ω; τ̂ −→ext ω

′; τ̂ ′,
supporting extended types, agrees with our term-level semantics:

Theorem (Promotion to extended types preserves semantics). If
Σ; e −→ Σ′; e ′ and if e⇑ exists, then Σ⇑; e⇑ −→ext Σ′⇑; e ′⇑.

Note that Σ is just a collection of let-declarations δ, and can be
promoted by the relevant algorithm in Figure 3.

7. Discussion
7.1 Type inference
In Section 4.3, we claim that an unsaturated type family interferes
with type inference. The problem stems from the fact that GHC
assumes both injectivity and generativity of type application. By
injectivity, we mean that if GHC can derive (a b) ∼ (a c), then
it can conclude b ∼ c . Generativity means that if GHC can derive
(a b) ∼ (c d), then it can conclude a ∼ c . In other words,

11 No attempt is made at modeling Haskell’s call-by-need semantics; we
settle for call-by-name.

a generative type application creates something new, unequal to
anything created with other types.

Type family application is neither injective nor generative.
Thus, GHC must ensure that an unapplied type family can never be
abstracted over – that is, no type variable can ever be instantiated
to a partially-applied type family. If we did perform such an instan-
tiation, GHC’s injectivity and generativity assumptions would be
invalid, and type inference may arrive at a wrong conclusion.

In this paper, we show a way essentially to manipulate partially-
applied type functions. How does this fit with the story above?
Critically, the application of a type function in this paper is done
explicitly, with the @@ operator. Thus, a programmer can use un-
saturated type functions by explicitly choosing what assumptions
hold at each type application. When we say a b (normal type ap-
plication), that application is injective and generative, as usual. If,
however, we say a @@ b, then the application is not necessarily ei-
ther injective or generative.

This dichotomy works well with GHC’s treatment of type fam-
ily arguments. Recall that @@ is implemented as an ordinary open
type family. Thus, GHC will not break it apart or use the injec-
tivity and generativity assumptions on applications built with @@.
Happily, this is exactly the behaviour that we want.

The fact that we introduce a new arrow� fits nicely with this,
as well. The regular arrow→, when classifying types, indicates an
injective, generative function. Our new arrow� denotes a function
without these assumptions. When→ is used to classify terms, we
make no assumptions about the functions involved. It is thus natural
to promote the type→ to the kind�, not to the kind→.

7.2 Eliminating symbols
We can go further and argue that GHC’s current choice to use juxta-
position for type family application is a design error. The identical
appearance of normal application and type family application hides
the fact that these are treated differently by GHC. For example, con-
sider these type signatures:

ex1 :: Maybe a→ Bool
ex2 :: Foogle a → Bool

We know that ex1’s type is unambiguous – that is, we can infer
the type a if we know Maybe a. But, what about ex2? To know
whether the type is ambiguous, we must know how Foogle is
defined. Is it a type family, or a type constructor? The answer to that
question directly informs ex2’s level of ambiguity. A library author
might want to change the nature of Foogle from a type constructor
to a type family; now, that change impacts users.

On the other hand, if all type families had to be applied explic-
itly in user code, the difference would be manifest:

ex2 :: Foogle @@ a→ Bool

Now, programmers can easily see that ex2’s type is ambiguous and
ponder how to fix it.

In the bold new world where type family application is explicit,
the appearance of a type family in a program would mean essen-
tially what we mean by a 0-symbol. We can also imagine that GHC
could allow @@ to be used with proper type constructors, as→ could
be considered a sub-type of�.

7.3 Semantic differences between terms and types
Terms are evaluated on a by-need basis. How does this translate
to types? Type evaluation is non-deterministic and operates differ-
ently than term-level evaluation. Indeed, type-level “evaluation” is
implemented within GHC by constraint solving: GHC translates a
type such as Vec a (Pred n) to (Pred n ∼ m)⇒ Vec a m for a
fresh m. See Vytiniotis et al. (2011) for details.

Eisenberg, Stolarek: Promoting Functions to Type Families in Haskell 11 2014/6/30

Despite this significant difference, we have yet to see any prob-
lems play out in our work (neglecting the impossibility of infinite
types). It is possible to define type families with non-linear equa-
tions (i.e., left-hand sides with a repeated variable) and to define
type families over the kind ?. Both of these have semantics dif-
ferent than anything seen at the term level. For example, note the
somewhat unintuitive rules for simplifying closed type families de-
scribed by Eisenberg et al. (2014). However, it seems that by re-
stricting the form of type families to look like promoted term-level
functions, we sidestep these problems nicely.

7.4 Features beyond Haskell 2010
We have restricted the scope of our work to include only features
mentioned in Chapters 3 and 4 of the Haskell 2010 Report. How-
ever, we ourselves enjoy using the many features that GHC sup-
ports which fall outside this subset. Many of these features are not
possible to promote. Without first-class kind polymorphism (such
as higher-rank kinds), we cannot promote higher-rank types. With-
out kind-level equality, we cannot promote equality constraints,
GADTs, or type families; see Weirich et al. (2013) for some the-
oretical work toward lifting this restriction. Overlapping and inco-
herent class instances would lead to overlapping open type family
equations; these are surely not promotable. Intriguingly, GHC does
allow functional dependencies among kind variables, so these pro-
mote without a problem. We leave it open to future study to deter-
mine which other extensions of GHC are promotable.

7.5 Future work
The most tempting direction of future work is to implement a pro-
motion algorithm in GHC directly. With support for partial appli-
cation in types along the lines of what we propose in Section 7.2,
this could be done with much less clutter than we see in this pa-
per. A non-trivial problem in this work is that of namespaces: how
can we remain backward compatible while allowing some terms to
be used in types? Dealing with naming issues was a recurrent and
annoying problem in our work. An important advantage of direct
implementation within GHC is that the algorithm would work in
a fully typed setting. Instead of generating unusable definitions –
as demonstrated in Section 5 – the algorithm could detect errors
and report them to the programmer. It would also be possible to
correctly promote functions stored inside datatypes.

We would also want a more complete treatment of promoted
literals within GHC. The current mismatch between term-level in-
tegers and type-level Nats is inconvenient and can prevent promo-
tion of term-level functions to the type level. Similarly, the kind
Symbol and the type String behave too differently to make pro-
motion of String functions possible.

With these improvements in place, we would be even closer
to enabling dependently typed programming in Haskell, along the
lines of the work by Gundry (2013). That work takes care in
identifying a subset of Haskell that can be shared between the term
level and type level. This subset notably leaves out anonymous and
partially-applied functions. The work done here shows that these
forms, too, can be included in types and will enable an even more
expressive dependently typed Haskell.

Acknowledgments
This material is based upon work supported by the National Science
Foundation under Grant No. 1116620.

References
M. M. T. Chakravarty, G. Keller, and S. Peyton Jones. Associated type

synonyms. In ACM SIGPLAN International Conference on Functional
Programming, 2005a.

M. M. T. Chakravarty, G. Keller, S. Peyton Jones, and S. Marlow. As-
sociated types with class. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, 2005b.

J. Cheney and R. Hinze. First-class phantom types. Technical report,
Cornell University, 2003.

R. A. Eisenberg and J. Stolarek. Promoting functions to type families in
Haskell (extended version). Technical Report MS-CIS-14-09, University
of Pennsylvania, 2014.

R. A. Eisenberg and S. Weirich. Dependently typed programming with
singletons. In ACM SIGPLAN Haskell Symposium, 2012.

R. A. Eisenberg, D. Vytiniotis, S. Peyton Jones, and S. Weirich. Closed
type families with overlapping equations. In ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, 2014.

K.-F. Faxén. A static semantics for Haskell. Journal of Functional Pro-
gramming, 12(4-5), July 2002.

A. Fischbach and J. Hannan. Specification and correctness of lambda
lifting. Journal of Functional Programming, 13(3), May 2003.

A. Gundry. Type Inference, Haskell and Dependent Types. PhD thesis,
University of Strathclyde, 2013.

T. Johnsson. Lambda lifting: Transforming programs to recursive equations.
In Conference on Functional Programming Languages and Computer
Architecture, 1985.

M. P. Jones. Typing Haskell in Haskell. In Haskell Workshop, 1999.
M. P. Jones. Type classes with functional dependencies. In European

Symposium on Programming, 2000.
A. Kennedy. Programming Languages and Dimensions. PhD thesis,

University of Cambridge, 1996.
S. Lindley and C. McBride. Hasochism: the pleasure and pain of depen-

dently typed Haskell programming. In ACM SIGPLAN Haskell Sympo-
sium, 2013.

S. Marlow. Haskell 2010 Language Report. Technical report, 2010.
T. Muranushi and R. A. Eisenberg. Experience report: Type-checking poly-

morphic units for astrophysics research in Haskell. In ACM SIGPLAN
Haskell Symposium, 2014.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and G. Washburn. Simple
unification-based type inference for GADTs. In ACM SIGPLAN Inter-
national Conference on Functional Programming, 2006.

S. Peyton Jones, D. Vytiniotis, S. Weirich, and M. Shields. Practical type
inference for arbitrary-rank types. Journal of Functional Programming,
17(1), Jan. 2007.

J. Reynolds. Definitional interpreters for higher-order programming lan-
guages. In ACM Annual Conference, 1972.

P. Sewell, F. Zappa Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar,
and R. Strniša. Ott: Effective tool support for the working semanticist.
Journal of Functional Programming, 20(1), Jan. 2010.

T. Sheard and S. Peyton Jones. Template metaprogramming for Haskell.
ACM SIGPLAN Notices, 37(12), Dec. 2002.

M. Sulzmann, M. M. T. Chakravarty, S. Peyton Jones, and K. Donnelly.
System F with type equality coercions. In ACM SIGPLAN Workshop on
Types in Languages Design and Implementation, 2007.

D. Vytiniotis, S. Peyton Jones, T. Schrijvers, and M. Sulzmann. Out-
sideIn(X) modular type inference with local assumptions. Journal of
Functional Programming, 21(4-5), Sept. 2011.

P. Wadler and S. Blott. How to make ad-hoc polymorphism less ad hoc.
In ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, 1989.

S. Weirich, J. Hsu, and R. A. Eisenberg. System FC with explicit kind
equality. In ACM SIGPLAN International Conference on Functional
Programming, 2013.

B. Yorgey, S. Weirich, J. Cretin, S. Peyton Jones, D. Vytiniotis, and J. P.
Magalhães. Giving Haskell a promotion. In ACM SIGPLAN Workshop
on Types in Language Design and Implementation, 2012.

Eisenberg, Stolarek: Promoting Functions to Type Families in Haskell 12 2014/6/30

	Promoting Functions to Type Families in Haskell
	Citation

	tmp.1471636596.pdf.rBBdl

